Linking Management and Monitoring:

Concept and Application for Wildlife

Aaron D. Flesch

University of Arizona

School of Natural Resources

Outline

- Overview of Adaptive Management
- Why monitoring is essential to Ad. Management
- Define biological monitoring
- Considerations for monitoring
- Example of a monitoring program.

Traditional Management

A trial and error approach

- Conventional wisdom
- Best current data (if any)
- Evaluation often not formalized
- No inherent feedback mechanism

Adaptive Management: Philosophy

Traditional management plus...

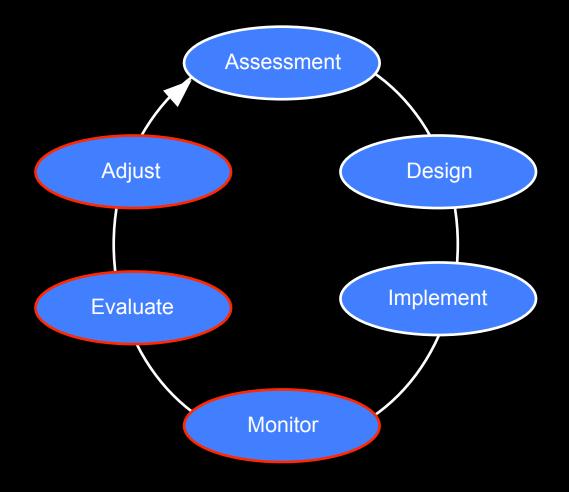
- A structured process for "learning by doing"
- Management as an <u>experiment</u>
- Hypotheses-testing framework
- Information gained is used to revise management through built-in feedback mechanisms

Adaptive Management: Definitions

A process for <u>continually</u> improving management practices by learning from the outcomes of management programs.

A process where management is applied <u>experimentally</u> to evaluate alternative hypotheses about a <u>system</u>.

Adaptive Management: History


In 1950s for industrial operations

- For natural resources:
 - Holling, C.S. 1978. Adaptive environmental assessment and management. Wiley.
 - Walters, C.J. 1986. Adaptive management of renewable natural resources. McMillan.

Why Adaptive Management?

- Mistakes are expensive!
- Lots of options but only one may work
- Nature is complex
- High uncertainty and variation

Adaptive Management Process

Active vs. Passive Adaptive Management

Active

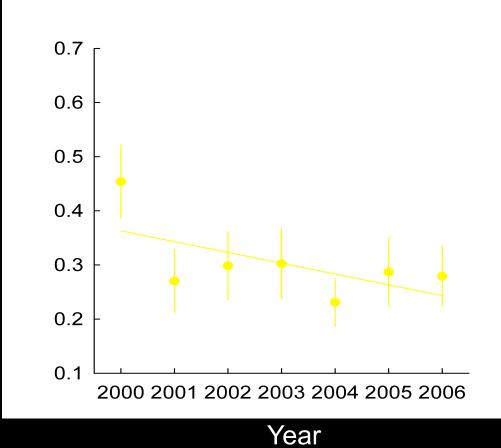
- Apply treatment
- Assess results
- Revise practice or continue treatment

Passive

- No initial treatment
- Monitor system
- Assess
- Take action or continue monitoring

Review - So Why Monitor?

- To assess changes in resources over time
- To evaluate
 - Influence of existing management (active)
 - Needs for new actions (passive)
- As a basis for revising management
- To optimize stewardship of the environment


What is biological monitoring?

Considerations for monitoring

What is biological monitoring?

Repeated measurement of a resource over **time**

- To detect trends
 - Presence
 - Direction (+, –, \cap)
 - Magnitude (rate)

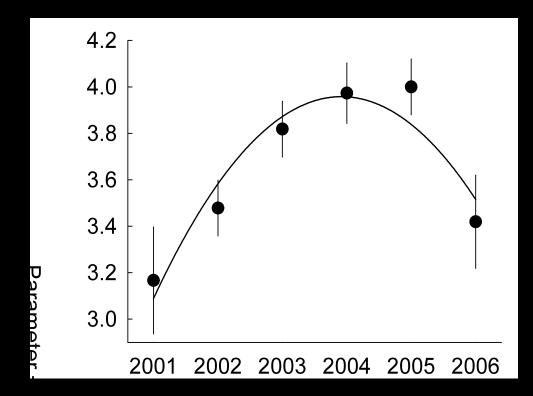
Considerations Before Monitoring

Choose

- Objectives
- Subject
- Methods
- Sampling design
- Sample sizes
- Effort allocation
- Data analysis

What Do We Monitor?

- Active adaptive management
 Specific target resource
- Passive adaptive management
 - Often General
 - e.g., "maintain native biodiversity"



What to Monitor

Parameter - subject of inference across time

- For Wildlife Managers
 - Population
 - Community

Population Parameters

Examples

- Occupancy
- Abundance
- Demographics
- Diet
- Movements (home range size)
- Gene frequencies

Typical Population Parameters

- Occupancy (presence vs. absence) (0 or 1)
 Proportion of sites occupied
- Abundance (or density) (0...∞)
 Population size
- Demographics
 - Nest success (0 or 1)
 - Productivity (0, 1, 2, 3...)
 - Growth rate (λ)

Community Parameters

Examples

- Richness
- Evenness
- Diversity
- Energy flow

Often based on population parameters

Other Parameter Categories

Examples

- Climate
 - rain, temperature...
- Landscape attributes
 - cover, use, greenness, fragmentation...
- Chemical cycles
 - carbon fixation, evapotranspiration...
- Water

- quality, quantity, groundwater or surface, geomorphology...

• Disturbance

Parameter Selection - Decisions

Considerations - ecological and statistical

- Ecological relevance
- Sampling efficiency
- Conservation value
- Threat

Parameter Selection - Decisions

Considerations - management

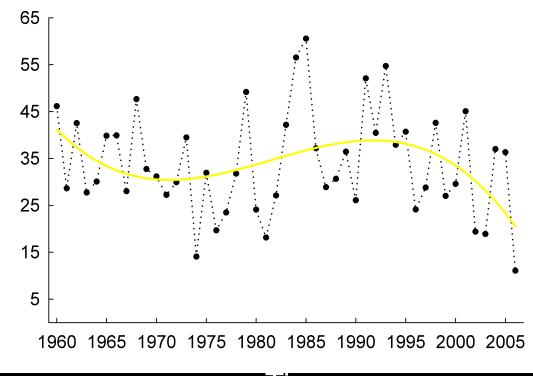
Value for...

Assessing relevant change

- Triggering management
- Evaluating and adapting existing management

Ecological Relevance

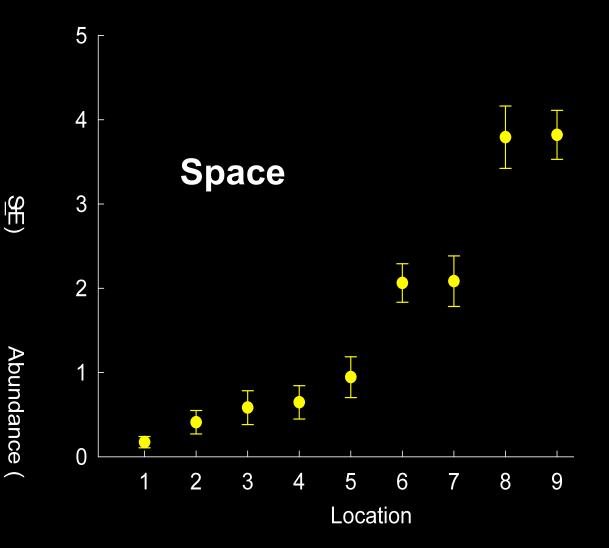
Considerations


- Connection between parameter and larger system
 Responsiveness to change
- Parameter responds quickly
 Small lag time

Sampling Efficiency I

Considerations

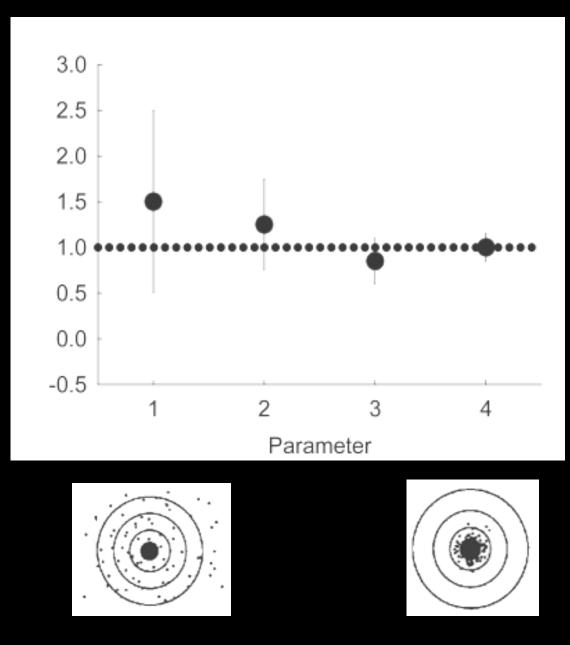
- Method available
- High detectability
- Low random variation
- Low sampling error
- Time and \$


Time

Sampling Efficiency II

Abundance (

Considerations


Low random variation ightarrow

Sampling Efficiency III

Considerations

• Low sampling error

Sampling IV - Detectability

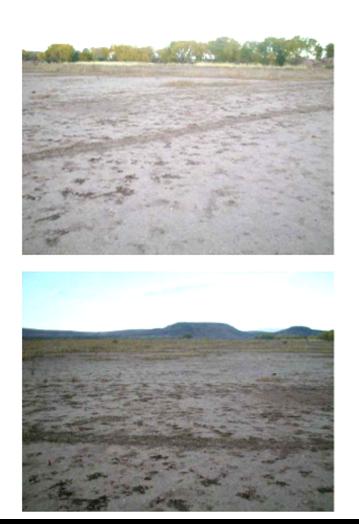
"Probability of detecting an individual provided it is present"

Some individuals present but undetected

• False negative results

No adjustment = biased estimates

If We Don't Adjust for Detectability 🛞


Problems

- Changes in population size unknown
- Changes in detectability big problem
- Comparisons among species not possible

Changing Detectability

Is detectability here....

Changing Detectability

Same as detectability here....

No Way!

Monitoring and Detectability ③

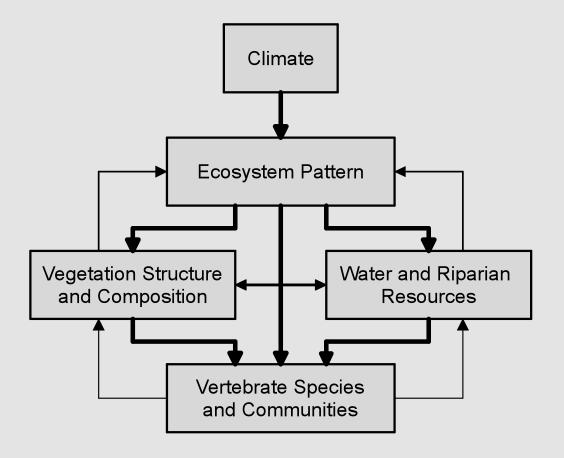
Estimate and adjust for detectability

- Many methods available
 - Observational
 - Capture-recapture

Assessing Detectability I

Observational Methods

- Distance sampling
- Repeated sampling
- "Removal" methods
- Double observers


Assessing Detectability II

Capture-recapture

- Closed-population models
- Open-population models
- Marked subsets Radio tracking
- Trapping webs with distance sampling

Biodiversity Monitoring – Big Picture

Hierarchy of parameters linkages

Importance of Linkages

Biotic and abiotic factors linked

- Measuring both can provide insight into...
 - Causes of change
 - Foreshadow future changes
 - Strategies for addressing changes
 - Knowledge of system
- Other advantages
 - Stressors often unknown when program is conceived
 - Flexibility
 - Faster response time

Conclusions

- Monitoring is an essential part of management
- But we can't monitor everything in a system
- Thoughtful design with improve success
- Broad range of considerations for monitoring
- Monitoring a linked suite of parameters more insightful