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a b s t r a c t

Information on population trends, population structure, and factors that drive them is useful for assessing
extinction risks and for guiding conservation. In arid environments, weather often has large effects on
population dynamics and climate change may be driving pervasive population declines. I used time-ser-
ies data and two approaches that make different assumptions about observation error and process noise
to evaluate population trends and population structure of ferruginous pygmy-owls (Glaucidium brasilia-
num) in the Sonoran Desert of northwest Mexico, and assessed how temporal variation in weather and
spatial variation in vegetation and land use affected dynamics. Abundance declined over 12 years based
on both approaches, but estimates from multivariate state-space models that explicitly considered
observation error and process noise, were steeper (�2.8%/yr) with lower precision (SE = 3.6%) than those
from mixed-effects models (�1.9%/yr, SE = 0.8%) that assumed no process noise. Annual precipitation at a
two-year lag had positive effects and brooding-season temperature at a one-year lag had negative effects
on abundance, and together explained 75% of variation in population dynamics that were largely
synchronous across space, suggesting climate forcing. Abundance was persistently higher and varied less
in areas with more nest cavities, more riparian vegetation, and lower land-use intensity, suggesting these
factors are important drivers of habitat quality and good targets for managers. These results have
important implications in arid regions of western North America where drought and extreme tempera-
tures linked to climate change have prevailed over much of the last decade and where monitoring and
conservation measures are needed to address these threats.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding processes that drive spatiotemporal variation in
animal abundance is a longstanding issue in ecology (Turchin,
2003). In applied contexts, information on spatiotemporal
variation in abundance is essential for assessing population trends
and extinction risks. Effective management responses to observed
trends, however, necessitate accurate estimates of population
parameters and understanding processes that drive them. Tempo-
ral variation in weather can have large effects on vital and popula-
tion growth rates, and extreme weather linked to climate change
may now be driving pervasive population declines (Stenseth
et al., 2002; Jenouvrier, 2013). In arid and semi-arid environments,
precipitation and temperature often directly affect plant produc-
tivity and exert a range of complex direct and indirect effects on

populations at varying lag times and trophic levels (Lima et al.,
2002; Holmgren et al., 2006). These patterns have broad global
conservation implications because arid and semi-arid regions
cover >40% of land on Earth and are particularly vulnerable to
climate change (Loarie et al., 2009). In arid regions of western
North America, for example, recent signs of climate change are per-
vasive and are expected to intensify (Overpeck and Udall, 2010).
Moreover, ongoing drought and extreme temperature events
during the last decade have been linked to marked declines in vital
or population growth rates in the few vertebrate systems that have
been continuously monitored (Barrows, 2006; Moses et al., 2012;
Zylstra et al., 2013; Lovich et al., 2014). Evaluating the pervasive-
ness of these trends and developing strategies to mitigate them
requires additional data on populations and on factors that can
buffer the effects of harsh weather.

Despite the importance of information on population trends
and drivers, extracting accurate inferences from monitoring data
is complicated by two general sources of error: observation error
and process noise. Field surveys rarely reveal true abundance,
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and differences between truth and estimates produces observation
error, which reduces confidence in inferences (Staples et al., 2004).
Observation error includes measurement error, or differences
between truth and estimates at sampled locations, and sampling
error, or differences between sampled locations and the population
at large. Process noise resulting from demographic and environ-
mental stochasticity can produce short-term declines in popula-
tions that are actually stable over the long term (Dennis et al.,
2006). Because they explicitly consider both sources of error,
state-space models (SSM) are being used increasingly to model
population dynamics but are complex and may have lower preci-
sion and power to detect declines than more conventional
approaches (Dennis et al., 2006; Wilson et al., 2011a). These issues
are especially relevant when assessing the dynamics of rare or at-
risk populations where sample sizes and time-series length are
often limited and where low precision complicates detecting pat-
terns more likely to have serious consequences. Nonetheless, there
are few comparisons of techniques (e.g., Wilson et al., 2011a).
Moreover, because populations with low process noise and high
levels of structure (e.g., numerous independent subpopulations
with asynchronous dynamics) are less vulnerable to extinction,
unbiased forecasts of extinction risk necessitate accurate infer-
ences on these parameters (Heino et al., 1997; Holmes et al., 2007).

I evaluated population trends and population structure of a
predatory bird in an arid region of northwest Mexico where
drought and extreme temperature events, which have prevailed
over much of western North America over the last decade, may
be driving population declines. To do so, I compared inferences
from multivariate state-space models (mSSM) that explicitly con-
sider uncertainty due to both observation error and process noise
with those from more conventional mixed-effects models of
observed counts that assume no process noise. Despite few
examples of their application, mSSM offer multiple advantages
over their univariate counterparts because they facilitate simul-
taneous estimation of spatiotemporal variation in trends, process
variance, and covariance, which are important for understanding
population dynamics and forecasting extinction risk (Hinrichsen
and Holmes, 2010). Moreover, I assessed the effects of weather
on population dynamics by evaluating hypothesized relation-
ships between temporal variation in abundance and weather
based on the biology of the system. Finally, because understand-
ing factors that can buffer the effects of harsh weather on popu-
lations can guide managers, I assessed the effects of spatial
variation in vegetation and land use on spatiotemporal variation
in abundance.

2. Methods

2.1. Study species and area

I considered populations of ferruginous pygmy-owls (Glaucidi-
um brasilianum) in four watershed regions in the Sonoran Desert
of northwest Mexico directly south of Arizona, USA (see Flesch
and Steidl, 2006 for details on study sites). In these arid environ-
ments, pygmy-owls are generalist predators and residents in
woodlands associated with giant columnar saguaro cacti (Carne-
giea gigantea) that provide nest cavities. Pygmy-owls were once
considered common in portions of the Sonoran Desert in Arizona
but were extirpated from much of their range, listed as endangered
in 1997, then delisted for reasons unrelated to recovery in 2006
(USFWS, 2011). In neighboring northwest Mexico, pygmy-owls
are more common but thought to be declining for unknown rea-
sons (Flesch and Steidl, 2006). Thus, current information on popu-
lation trends and factors that drive them are important for
conservation and management in this system and more generally

for understanding how vertebrate populations in arid regions of
western North America are responding to extreme weather.

The study area included both major vegetation communities
occupied by pygmy-owls in the northern Sonoran Desert, the Ari-
zona Upland subdivision of the Sonoran Desert and semi-desert
grassland (Brown, 1982). Arizona Uplands are dominated by wood-
lands and scrub of short leguminous trees such as mesquite (Pros-
opis velutina) and saguaros. Semi-desert grasslands are dominated
by open mesquite woodlands, bunchgrasses, sub-shrubs, and often
support lower densities of saguaros. Riparian areas in both com-
munities are dominated by mesquite woodlands. Annual precipita-
tion in this region is bimodal and dominated by a summer
monsoon in late June–September and winter storms that are most
intense during the warm phase of the El Niño Southern Oscillation.

2.2. Sampling and survey design

I estimated abundance by repeatedly surveying the same loca-
tions across time. In spring 2000, I surveyed 71 transects that I
selected randomly. After these initial surveys, I randomly selected
18 transects in landscapes occupied by pygmy-owls and surveyed
these transects each spring for the next 11 years. Transects were
located within 75 km of the US–Mexico border and totaled 54 km
in length. I placed transects along drainage channels and elicited
responses by broadcasting territorial calls at 5–10 stations per
transect, which yields nearly perfect detection probability of terri-
torial males (Flesch and Steidl, 2006, 2007). To minimize chances
of double-counting individuals, which typically move toward
broadcasts, I increased station spacing after initial detection of
each male, used response distance, direction, and timing to esti-
mate abundance, and occasionally repeated surveys at some
stations.

2.3. Trend analyses

To estimate population trends and population structure, I used
autoregressive mSSM,

xt ¼ Bxt�1 þ uþ v t; v t �MVNð0;QÞ ð1Þ

yt ¼ Zxt þ aþwt; wt �MVNð0;RÞ ð2Þ

where xt is a vector of log+1 transformed unknown true abundances
in year t, B is an autoregressive parameter estimating density
dependence, u is a trend parameter, and v is process error that
has a multivariate normal (MVN) distribution with mean zero and
variance Q that measures process variance (Hinrichsen and
Holmes, 2010). In Eq. (2), yt is a vector of log+1 transformed counts
of males on each transect, Z is a n �m design matrix identifying
time series (n) associated with each state process (m), which models
population structure, a is a vector of n � 1 intercept-like parame-
ters, and w is observation error that has a MVN distribution with
mean zero and variance R that measures observation error. Data
enter the model as y’s and x’s are estimated. I assumed initial abun-
dance (x0) was not at equilibrium and assumed density indepen-
dence (B = 1) because estimates of B from parametric bootstrap
likelihood ratio tests (Dennis and Taper, 1994) and the best mSSM
were P0.96. To estimate the unknown parameters (u, Q, R, x0), I
used maximum likelihood (ML) methods and the expectation-max-
imization and Kalman filter algorithms implemented by the MARSS
library in R to estimate parameters and parametric bootstraps to
estimate standard errors (R Core Development Team, 2013).

Univariate and mSSM are similar but by considering multiple
time series simultaneously, mSSM do not require condensing data
from each sample into a single population-wide estimate for each
time step. Therefore, variation in trends and process errors among
population units in different strata and covariance among errors
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can be estimated, and inferences reported here are based on the
full 18 transect �12 year sample. To assess evidence of population
structure, I considered three model structures: (1) time series for
each transect as independent samples from one larger population
with one trend and process error, (2) regional subpopulations
(m = 4) with equal trends and equal or varying process errors with
covariance, and (3) regional subpopulations with varying trends
and equal or varying process errors with covariance. In models that
considered regional population structure, the number of estimated
parameters (K) included both variances and covariances. Because
likelihood profiles of parameters in SSM can have multiple local
maxima and low estimablility, I initiated parameter searches from
random sets of starting values and evaluated profile likelihoods
across a range of parameter values.

To compare inferences on trends and population structure
between mSSM and a more conventional approach that did not
partition observation and process error, I fit a similar set of linear
mixed-effects models (LMEM)

yit ¼ ðb0 þ b0iÞ þ b1xit þ eit ; eit � Nð0;r2Þ ð3Þ

where yit is the observed data as in Eq. (2), b0 is an intercept for the
population, b0i is a vector of random intercepts for each transect, b1

is a trend parameter for a fixed time effect, xit indicates the year of
each observation for the ith transect centered at 0, and eit is an error
term that has a normal distribution with a mean of zero and vari-
ance r2 that measures observation variance. Whereas mSSM explic-
itly separate observation and process variance, both variances are
confounded in LMEM of count data and all variance is assumed to
be observation error.

To assess population structure, I specified additional models
analogous to those for mSSM. To assess regional variation in inter-
cepts, I replaced b0i in Eq. (3) with a vector of random intercepts for
regions (b0j) and a vector of random intercepts for transects nested
within regions (b0j(i)). To assess regional variation in trends, I fit a
random slope for region (b1j). To assess spatial variation in
observation error, I fit three additional models that estimated
observation variances for each region. To model covariance in
observation error, I considered first-order autoregressive [AR(1)]
and autoregressive-moving-average structures; AR(1) was
supported in all cases and reported. I used restricted ML when
assessing models with different random effects, ML to estimate
fixed effects, and fit models with the nlme library in R. To evaluate
support among models in each set, I used AICc and model averaging
where there was support (e.g., AICc within 2 points) for >1 model
(Burnham and Anderson, 2002).

2.4. Environmental drivers

Temporal variation in weather could affect owl abundance
directly through energetic and thermoregulatory constraints or
indirectly by affecting prey. Low winter temperatures could cause
direct mortality of owls or prey, or reduce body condition neces-
sary to establish territories. Thus, the winter stress hypothesis pre-
dicts that lower average minimum temperatures during winter
(November–March) reduce owl abundance the following spring.
High temperatures during nesting could limit prey activity or
reduce nestling condition or survival, which could reduce owl pro-
ductivity and abundance the following year. Thus, the nestling
stress hypothesis predicts that high average maximum tempera-
tures reduce owl abundance one year later. In arid environments,
precipitation can augment prey abundance directly and positively
during the same year or indirectly by augmenting insect or plant
resources that are important to prey and create lagged effects.
Thus, the direct prey enhancement hypothesis predicts owl

abundance in year t increases with precipitation in year t � 1, and
the delayed prey enhancement hypothesis predicts owl abundance
in year t increases with precipitation in year t–2. Because the
effects of annual vs. seasonal precipitation, and incubation- vs.
brooding-season temperature could vary, I considered cool-season
(October–May), warm-season (June�September), and annual
(October–September) precipitation when evaluating prey enhance-
ment hypotheses, and temperature during incubation (April) and
brooding (May–June) when evaluating the nestling stress hypoth-
esis and used factors that minimized AICc to represent hypotheses.
Correlations between weather factors associated with different
hypotheses were relatively low (r = �0.41–0.38). All weather data
were from stations near Sasabe, which is at the north-central edge
of the study area 5-75 km from transects (Western Regional
Climate Center, 2012).

Spatial variation in factors that affect resources important to
owls could explain variation in population dynamics. To address
this question, I quantified vegetation and land use around survey
stations and averaged measurements within transects (see Flesch
and Steidl, 2006). I quantified amount of riparian vegetation by
measuring the width of riparian vegetation corridors. To describe
vegetation structure, I measured woodland cover, canopy height,
and vegetation volume in riparian areas, and canopy height and
vegetation volume in uplands. I estimated abundance of potential
nest sites by measuring the proportion of stations where mature
saguaros were present, which were the only substrates used for
nesting. I ranked land-use intensity from 0 to 3 (none, low, moder-
ate, high) in five categories (agriculture, woodcutting, exotic-grass
planting, livestock grazing, housing) and summed ranks across cat-
egories. I measured vegetation at the beginning of the study
because it was largely static and land use each year because it
occasionally varied. Because some attributes of vegetation struc-
ture were correlated, I used principal components analysis to gen-
erate synthetic variables. A component representing riparian
vegetation structure was positively correlated with woodland
cover (r = 0.66), canopy height (r = 0.52), and vegetation volume
in strata >3-m above ground (r P 0.34) in riparian areas, whereas
a component representing upland vegetation structure was posi-
tively correlated with canopy height (r = 0.65) and vegetation vol-
ume P1-m above ground (r P 0.90) in uplands. Correlations
between vegetation and land-use factors were relatively low
(r = �0.40 to 0.52).

To evaluate the effects of weather, vegetation, and land-use fac-
tors, I added fixed covariate terms to Eq. (3), used the most parsi-
monious structures for the random effects and r2, and used AICc to
assess support among models. When evaluating support among
weather hypotheses, I considered each hypothesis independently
and biologically plausible combinations of hypotheses. To evaluate
the effects of spatial factors, I developed nine candidate models
representing the effects of five potential covariates and considered
abundance of potential nest sites in all models because they are
critical for reproduction. Because inferences were very similar
based on both modeling approaches, all reported effects are from
LMEM.

Individuals in high-quality habitat may be less susceptible to
harsh weather (Franklin et al., 2000). Moreover, theoretical models
and data on habitat selection indicate the highest quality places are
selected first and used more consistently over time (Fretwell and
Lucas, 1969; Sergio and Newton, 2003). Therefore, transects with
more persistent populations and thus lower coefficients of varia-
tion in abundance (CVa) across time should support higher quality
habitat independent of local carrying capacity. Hence, to identify
factors associated with habitat quality, I regressed vegetation and
land-use factors against CVa.
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3. Results

3.1. Trends and variances

Abundance declined across time based on both modeling
approaches (Fig. 1). Two top-ranked mSSM estimated declines of
2.6–2.8%/yr, or 25.2–26.5% over 12 years. A top-ranked LMEM esti-
mated a decline of 1.9%/yr or 19.2% overall (Tables 1 and 2).
Despite similar trend estimates, precision was low for mSSM
(SE = 3.6%) and 95% confidence intervals overlapped zero. Abun-
dance was high initially (55 males), declined steadily to 2008
(21 males), increased in 2009 and 2010 (36–39 males), then
decreased somewhat during the final year (34 males). Although
dynamics varied somewhat regionally (Fig. 1), there was no
evidence that trends varied regionally (DAICc P 6.6; Table 1).

The top-ranked mSSM was for a single population with one
trend and process variance. A model with regional covariance in
process variance (r = 0.58) had less support (DAICc = 1.49). In
contrast, the top-ranked LMEM indicated regional differences in
observation error (range = 0.082–0.13) but not intercepts (DAICc

P 2.12). Residuals separated by one year were moderately

correlated (r = 0.29) whereas observations from the same transects
across time were highly correlated (r = 0.71).

Estimates of process variance from mSSM (0.015) were much
lower than observation error (0.086; Table 2). Profile likelihoods
of observation variance suggested it was highly estimable but less
so for the trend parameter and process variance (Appendix A).
Estimates of observation error from LMEM (0.094) were similar
to the sum of both variances from mSSM.

3.2. Environmental drivers

Owl abundance varied markedly with weather but support
among hypotheses differed. Support for the nestling stress hypoth-
esis with brooding-season temperature and for the delayed prey
enhancement hypothesis with annual precipitation, were highest
(Table 3). Temporal variation in abundance closely tracked annual
precipitation at a lag time of two years (Fig. 2A) and abundance
increased by an average of 0.42 ± 0.17% (±SE) with each 1-cm
increase in precipitation. Abundance also closely deviated from
mean maximum temperature during the brooding season at a lag
time of one year (Fig. 2C) and abundance decreased by an average
of 8.5 ± 2.9% with each 1 �C increase in temperature. Together, both
of these weather factors explained 75% of temporal variation in
abundance across the population based on a simple linear model.
Importantly, maximum brooding-season temperature was higher
and annual precipitation was lower than long-term averages dur-
ing all but two years of the study (Appendix B). Warm-season pre-
cipitation at a 1-year lag also had a strong effect but there was little
support for an effect of cool-season precipitation (DAICc P 7.14) or
for the winter stress hypothesis (Table 3).

Spatial variation in vegetation and land use had large effects on
spatiotemporal variation in abundance. A top-ranked model
included positive effects of abundance of potential nest sites, struc-
tural complexity and amount of riparian vegetation, and a negative
effect of land-use intensity, but there was little support for an
effect of upland vegetation structure once these other factors were
considered (Table 3; Fig. 3). Moreover, most vegetation and land-
use factors that explained spatiotemporal variation in abundance
were associated with CVa in the predicted directions (Fig. 3).

4. Discussion

Abundance of ferruginous pygmy-owls in the Sonoran Desert of
northwest Mexico declined by an estimated 19–27% over 12 years
and temporal changes in owl abundance was highly associated
with variation in precipitation and temperature. These patterns
suggest that owl declines have been driven by drought and
extreme temperature events that have dominated the climate of
southwestern North America in recent years, and that are expected
to intensify (Seager et al., 2007; Overpeck and Udall, 2010;
Appendix B). Because patterns I observed in northwest Mexico
conform generally to those observed for abundance or vital rates
in the few vertebrate systems that have been monitored over the
same period in other arid regions of western North America
(Barrows, 2006; Flesch, 2008; Moses et al., 2012; Zylstra et al.,
2013; Lovich et al., 2014), they have alarming implications for con-
servation. For ferruginous pygmy-owls, these implications are
especially troublesome because populations have already declined
to endangered levels in the neighboring USA and because both
temperature and precipitation were associated with marked
changes in abundance and have strong multiplicative effects on
reproductive output that are likely driven by different mechanisms
(Flesch, 2013). Despite these alarming trends, additional monitor-
ing is needed to assess whether they represent short-term natural
variation in abundance or an actual systematic long-term decline.

Fig. 1. Temporal variation and trends in abundance of ferruginous pygmy-owls in
the Sonoran Desert of northwest Mexico, 2000–2011. Top figure shows annual
estimates of log abundance based on the observed data (open points), fitted values
from a top-ranked linear mixed-effect model (LMEM; gray points-dashed line), and
smoothed state estimates from a top-ranked multivariate state-space model (mSSM
black points-solid line) on a standardized scale (e.g., subtract mean and divide by
standard deviation). Inset figure shows estimated trends based on each modeling
approach. Bottom figure shows spatiotemporal variation in abundance among four
regions based on smoothed state estimates from a mSSM that considered spatial
population structure and was parameterized with an equal growth rate, equal
process error, and regional covariance in process error among subpopulation units
in each region. Spatiotemporal variation in abundance is represented by an
abundance index because estimates are scaled to the first observation time series in
each region, which I selected to be the time series with the lowest mean abundance
across time.
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4.1. Trends and variances

Although trend estimates based on both approaches were neg-
ative, estimates from multivariate state-space models (mSSM)
were steeper (2.8%/yr) with much lower precision than those from
linear-mixed effects models (LMEM; 1.9%/yr). Because process
noise can produce autocorrelated residuals and may drive short-
term declines in populations that are actually stable, estimates of
decline from SSM tend to be higher than those from generalized
linear models of observed counts (Wilson et al., 2011b). Nonethe-
less, by assuming no process noise, generalized linear models
underestimate true uncertainty in population trends. Although
confidence interval coverage in SSM improves with time-series
length (Humbert et al., 2009), estimates of precision from mSSM
based on longer time series (22–28 years at 6–13 sites) are similar
to those reported here based on a 12-year time series at 18 sites,
suggesting much longer time series are needed to augment
precision (Hinrichsen and Holmes, 2010; Ward et al., 2010).
Despite uncertainty, the fact that both approaches produced simi-
lar estimates matches results from the only other comparison of
similar techniques of which I am aware (Wilson et al., 2011a)
and increases confidence that populations have indeed declined.

Table 1
Rankings and descriptions of models of population dynamics and population
structure of ferruginous pygmy-owls in northwest Mexico, 2000–2011. Multivariate
state-space models (mSSM) estimated population growth rate (u), observation
variance (R), and process variance (Q), and linear mixed-effects models (LMEM)
estimated trend (b1), observation variance (r2), and random intercepts for each region
(b0j) in time-series abundance data. In mSSM that considered regional subpopulation
structure, each estimated process error and covariance was considered an estimated
parameter (K).

Model
Description K DAICc wi

mSSM
One population, one u, equal Q 21 0.00 0.67
Regional subpopulations, one u, equal Q 22 1.49 0.32
Regional subpopulations, one u, varying Q 30 8.48 0.01
Regional subpopulations, varying u, equal Q 25 8.92 0.01
Regional subpopulations, varying u, varying Q 33 16.44 0.00

LMEM
Regional subpopulations, one b1, varying r2, same b0j 8 0.00 0.72
Regional subpopulations, one b1, varying r2, varying b0j 9 2.18 0.24
Regional subpopulations, varying b1, varying r2, varying b0j 11 6.60 0.03
One population, one b1, equal r2, same b0j 5 8.69 0.01
Regional subpopulations, one b1, equal r2, varying b0j 6 10.81 0.00
Regional subpopulations, varying b1, equal r2, varying b0j 8 15.10 0.00

Table 2
Parameter estimates from top-ranked models of population dynamics and population structure of ferruginous pygmy-owls in northwest Mexico, 2000–2011. Multivariate state-
space models (mSSM) estimated population growth rate (u), observation variance (R), process variance (Q), and linear mixed-effects models (LMEM) estimated trend (b1),
observation variance (r2), and random intercepts for each region (b0j) in time-series abundance data.

Model u/b1 R/r2 Q

Description Estimate SE Estimate SE Estimate SE

mSSM
One population, one u, equal Q �0.026 0.036 0.091 0.0091 0.013 0.0093
Regional subpopulations, one u, equal Q �0.028 0.036 0.082 0.0089 0.019 0.010
Model averaged estimates and unconditional SE �0.026 0.036 0.086 0.0099 0.015 0.0097

LMEM
Regional subpopulations, one b1, varying r2, same b0j �0.019 0.0079 0.094 0.021

Table 3
Model rankings and parameter estimates for the effects of weather and habitat factors on abundance (log +1) of ferruginous pygmy-owls along 18 transects in northwest Mexico,
2000–2011. Parameter estimates are on a percent scale and based on linear mixed-effects models with residual variances estimated for each region. Predicted effects of
precipitation (P, cm) and temperature (T, �C) considered lag times of one (t � 1) and two (t � 2) years and annual (October–September), brooding-season (May–June), warm-
season (June–September), and winter (November–March) periods. Habitat factors include cavity abundance (%), riparian vegetation structure (principal component correlated
with vegetation height, volume, and woodland cover in riparian areas), width of riparian vegetation zone (logm), upland vegetation structure (principal component correlated
with vegetation height and volume in upland areas), and land-use intensity (sum of ranks across categories; 0-none, 1-low, 2-mod., 3-high). Parameter estimates and standard
errors are in parentheses.

Model and estimates K AICc DAICc wi

Weather Hypotheses {Factor (b1 ± SE)}
Nestling Stress + Indirect Prey Enhancement {T-avg. max. brooding t � 1 (�8.5 ± 2.9), P-annual t � 2 (0.42 ± 0.17)} 10 175.95 0.00 0.73
Nestling Stress {T-avg. max. brooding t � 1 (�11.2 ± 2.8)} 9 179.78 3.83 0.11
Nestling Stress + Direct Prey Enhancement {T-avg. max. brooding t � 1 (�9.5 ± 3.0), P-warm season t � 1 (0.51 ± 0.39)} 10 180.28 4.33 0.08
Indirect Prey Enhancement {P-annual t-2 (0.59 ± 0.16)} 9 181.72 5.77 0.04
Nestling Stress + Winter Stress {T-avg. max. brooding t � 1 (�11.2 ± 2.8), T-avg. min. winter (0.23 ± 2.7)} 10 181.97 6.02 0.04
Direct prey enhancement {P-warm season t � 1 (1.0 ± 0.36)} 9 187.24 11.29 0.00
Null {time, intercepts, r2

j} 8 192.47 16.52 0.00
Winter stress {T-avg. min. winter (0.56 ± 2.8)} 9 194.62 18.67 0.00

Habitat Models and Factors (b1 ± SE)
Cavities (1.3 ± 0.3) + Rip. veg. structure (19.2 ± 5.8) + Rip. width (26.8 ± 7.7) + Land use (�18.0 ± 8.6) 14 158.50 0.00 0.40
Cavities (1.4 ± 0.3) + Rip. veg. structure (22.8 ± 6.6) + Rip. width (25.9 ± 7.6) + Land use (�15.5 ± 8.7) + Up. veg. structure (�4.6 ± 4.4) 15 159.72 1.22 0.22
Cavities (1.4 ± 0.3) + Rip. veg. structure (22.6 ± 6.2) + Rip. width (22.4 ± 8.3) 13 160.26 1.76 0.17
Cavities (1.5 ± 0.3) + Rip. veg. structure (27.1 ± 6.7) + Rip. width (22.0 ± 7.8) + Up. veg. structure (�6.7 ± 4.6) 14 160.48 1.98 0.15
Cavities (1.4 ± 0.4) + Rip. veg. structure (17.2 ± 7.0) 12 164.18 5.68 0.02
Cavities (1.5 ± 0.4) + Rip. veg. structure (22.1 ± 7.7) + Up. veg. structure (�7.1 ± 5.5) 13 164.85 6.35 0.02
Cavities (1.4 ± 0.4) + Rip. veg. structure (14.8 ± 7.3) + Land use (�10.1 ± 10.7) 13 165.54 7.05 0.01
Cavities (1.6 ± 0.4) 11 167.36 8.86 0.00
Cavities (1.6 ± 0.5) + Up. veg. structure (0.83 ± 5.8) 12 169.58 11.08 0.00
Null {time, weather, intercepts, r2

j } 10 175.95 17.45 0.00
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By explicitly estimating both observation error and process
noise, SSM can provide more reliable inferences on population
trends, especially in noisy systems or situations where sampling
methods are unstandardized. Nonetheless, when data are too
sparse to reliably separate process noise from observation error,
using SSM at a cost of precision may not be a useful tradeoff, espe-
cially when sampling effort is high and measurement error and
process noise are known or suspected to be low a priori. In these
situations, more conventional approaches such as LMEM may be
preferred.

Estimates of process noise (0.015) were relatively low, within
the range reported for other vertebrates, similar to estimates for
other non-passerine birds, and higher than for many large mam-
mals (Sabo et al., 2004; Holmes et al., 2007). Although precision
was also low given the relatively short time series (Lindley,
2003), estimates of process noise are useful for forecasting extinc-
tion risks, especially for species of conservation concern such as
pygmy-owls where no prior information existed. In contrast, esti-
mates of observation error (0.086) were higher, more precise, sim-
ilar to or lower than those for other non-passerine birds, and

higher than those for long-lived mammals (Lindley, 2003; Staples
et al., 2004; Ward et al., 2010).

Trends did not vary regionally based on either approach but
other aspects of population structure varied. When no process
noise was assumed, observation error varied regionally suggesting
higher levels of population structure than mSSM. When observa-
tion error and process noise were partitioned, process noise did
not vary regionally but year-to-year deviations in population
growth were moderately correlated among regions indicating lar-
gely synchronous dynamics across space. Whereas mSSM are use-
ful for evaluating population structure (Ward et al., 2010),
determining what drives this structure is more complex. Synchro-
nized dynamics can be driven by dispersal, climate forcing, and
spatial autocorrelation in important environmental factors (Ranta
et al., 1995). Although regions I monitored were roughly equidis-
tant, the region with the most disparate dynamics was isolated
by mountains that can limit dispersal (Flesch et al., 2010). Climate
forcing combined with local weather variation could drive syn-
chrony at levels observed here and is suggested by marked
weather effects. Moderate levels of synchrony have important

Fig. 2. Associations between abundance of ferruginous pygmy-owls and weather factors in the Sonoran Desert of northwest Mexico, 2000–2011. Left panel shows how
variation in annual estimates of owl abundance tracked different weather factors across time on a standardized scale. Right panel shows associations between annual
estimates of owl abundance and the weather factor depicted in the adjacent figure on the left panel on the observed scale. Lines are based on linear models.
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implications for persistence because highly synchronized
populations face greater extinction risks (Heino et al., 1997).

4.2. Environmental drivers

Precipitation was strongly associated with temporal changes in
abundance but annual precipitation at a two-year lag had greater
effects than warm-season precipitation at a one-year lag, which
is consistent with the ecology of this system and other arid sys-
tems in general. In arid environments, precipitation often drives
rapid increases in plant biomass, seed production, and insect abun-
dance, and these resource pulses directly bolster food availability
for small vertebrates thus increasing their abundances 6–
12 months later (Jaksic, 2001; Lima et al., 2002, 2008). Conse-
quently, predator populations are often affected indirectly and
respond two years later (Jaksic et al., 1992; Dennis and Otten,
2000; Lima et al., 2002; Letnic et al., 2005). In the Sonoran Desert,
pygmy-owls primarily consume lizards and secondarily large
arthropods (unpublished data), which explains why precipitation
had stronger effects at a lag time of two vs. one year. Wide-ranging
effects of precipitation on the dynamics of vertebrate populations
have been observed on at least three continents (Holmgren et al.,
2006) with this study providing a rare example from the Sonoran
Desert (Flesch, 2008). Because observed effects and lag times are
consistent with the ecology of this system and similar systems
worldwide, they strongly suggest weather-mediated trophic inter-
actions driven by drought contributed to declines.

In contrast with other arid systems (e.g., Holmgren et al., 2006),
high winter precipitation driven by the El Niño Southern Oscilla-
tion (ENSO) may not be the principal driver of bottom-up dynamics
in this system, even though ENSO events in early years affected
annual precipitation. In the Sonoran Desert, summer rather than
winter precipitation drives increases in lizard abundance (Flesch,
2008) and causes marked late-summer pulses in primary produc-
tivity when young pygmy-owls are recruiting into the adult
population.

Weather can have indirect effects on populations by affecting
resources or direct physiological effects (Stenseth et al., 2002).

Owl abundance decreased with increasing average maximum tem-
peratures during the brooding season at a lag time of one year,
which suggests both direct and indirect processes operate in this
system. Heat stress can directly affect the behavior and physiology
of desert birds (Wolf, 2000) and its potential effect on small owls is
plausible given they have lower thermal tolerances than other des-
ert birds (Ligon, 1969). Direct effects are also suggested by the facts
that use of hotter west-facing nest cavities by pygmy-owls declines
from relatively cool to hot regions of the Sonoran Desert, and nest
success is higher in cavities that produce cooler microclimates
(Flesch and Steidl, 2010). Alternatively, indirect effects are also
likely because high temperatures limit activity levels of lizard spe-
cies that are commonly depredated by pygmy-owls (Flesch, 2008).
Regardless of the mechanism, the observed negative effects of both
high temperature and low precipitation has disturbing implica-
tions given future forecasts associated with climate change in this
region (Seager et al., 2007; Appendix B).

Despite marked weather effects, spatial variation in vegetation
and land use also had important effects on owl abundance.
Abundance was higher on average in areas with more potential
nest cavities, greater structural complexity and quantity of riparian
vegetation, and lower intensity of livestock grazing and other land
uses. Moreover, abundance also varied less across time with many
of these same factors, suggesting they are important drivers of
habitat quality. Higher nest-site abundance can enhance habitat
quality by reducing predator efficiency (Martin, 1993) and by pro-
viding more optimal nest cavities that mitigate predation risk and
thermal stress (Flesch and Steidl, 2010). Larger area and greater
structural complexity of riparian vegetation also enhances repro-
ductive performance of pygmy-owls (Flesch and Steidl, 2010;
Flesch, 2013) whereas higher grazing intensity can degrade prey
resources and cover (Fleischner, 1994). Thus, while the bottom-
up effects of weather may have driven declines across the region,
high-quality habitat seemed to promote local persistence.
Although studies of population dynamics often focus on determin-
istic changes in abundance over large areas, spatial variation in
local resources can explain variation in dynamics that is often
assumed to be noise (Bjørnstad and Grenfell, 2001).

Fig. 3. Associations between spatial factors and abundance of ferruginous pygmy-owls along 18 transects in the Sonoran Desert of northwest Mexico, 2000–2011. Top panel
shows average predicted abundances along each transect across gradients in five vegetation or land-use factors measured along transects, and are based on estimates from a
linear mixed-effect model that included habitat and weather factors in the top-ranked model and a linear time effect. Bottom panel shows coefficients of variation in owl
abundance (CVa) across time for each transect vs. gradients in these same vegetation and land-use factors. Riparian vegetation structure was quantified based on a principal
component (PC1) that was positively correlated with vegetation height, volume, and woodland cover in riparian areas, and upland vegetation structure was quantified based
on a PC that was positively correlated with vegetation height and volume in upland areas. Parameter estimates (±SE) for each factor on abundance and CVa are as follows:
cavity abundance (1.6 ± 0.4, �2.3 ± 0.7), riparian vegetation structure (0.23 ± 0.08, �0.41 ± 0.12), width of riparian zone (0.10 ± 0.13, 0.08 ± 0.22), upland vegetation structure
(0.07 ± 0.07, �0.12 ± 0.11), land-use intensity (�0.28 ± 0.12, 0.51 ± 0.19). Lines are based on linear models.
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4.3. Conservation implications

Conserving vertebrate populations in arid environments in a
changing climate poses a range of challenges for managers. For
pygmy-owls, these challenges are especially complex in the USA
where widespread degradation and fragmentation of riparian
woodlands and urban growth have likely driven major population
declines during the last century (USFWS, 2011) and where habitat
restoration combined with natural or facilitated dispersal from
Mexico may be needed for recovery. Although declines I describe
in adjacent Mexico were not accompanied by any obvious changes
in vegetation or land use, if they continue, recovery strategies that
depend on dispersal from Mexico will be less effective and persis-
tence of pygmy-owls in the northern Sonoran Desert could be jeop-
ardized. Nonetheless, even in systems where weather has large
effects, understanding other factors that affect population dynam-
ics can help guide conservation. In this system, abundance was
higher and varied less over time in areas with more nest cavities,
greater structural complexity and amount of riparian vegetation,
and lower land-use intensity, suggesting these factors are impor-
tant drivers of habitat quality and good targets for managers. Thus,
augmenting nest cavities by erecting nest boxes and translocating
saguaros, restoring mesquite woodlands in riparian areas, which
have been lost or degraded across large areas of the Sonoran Des-
ert, and mitigating the effects of land use on important resources
should augment habitat quality and recovery prospects for
pygmy-owls. More broadly, because high-quality habitats can buf-
fer the negative effects of harsh weather or amplify the benefits of
favorable weather on vital and population growth rates (Franklin
et al., 2000; Flesch, 2013) enhancing habitat quality offers a prom-
ising potential strategy for mitigating the effects of climate change.
Understanding the extent to which habitat quality can mediate
weather effects is important in the wake of anticipated climate
change.
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