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Abstract Accurate abundance estimates of plant

populations are fundamental to numerous ecological

questions and for conservation. Estimating population

parameters for rare or cryptic plant species, however,

can be challenging and thus developing and testing

new methods is useful. We assessed the efficacy of

distance sampling for estimating abundance and

habitat associations of the endangered Pima pineapple

cactus (Coryphantha scheeri var. robustispina), a rare

plant in the Sonoran Desert of southwestern North

America that has traditionally been surveyed with

census-based methods. Distance sampling (DS)

involves measuring distances between focal objects

and samples of lines or points, and modeling detection

functions that adjust estimates for variation in detec-

tion probability (P). Although often used in animal

systems, DS remains largely untested for plants. We

encountered 105 live individuals along 36.9 km of

transects in 11 study plots placed across much of the

geographic range of the species, and estimated an

average density of 1.47 individuals/ha (CV = 0.139).

Compared to values from intensive censuses, density

estimates from DS were underestimated by only 2.3%

on average and highly correlated on the untransformed

(r = 0.84) and logarithmic (r = 0.93) scales. Esti-

mates of P averaged 0.49 and declined as soils became

increasingly dominated by larger soil substrates, and

somewhat with increasing vegetation volume and

decreasing cactus height. Local densities increased

with increasing slope and soil substrate size and

decreased with increasing vegetation volume (P

B 0.024). Combined with careful survey design, DS

offers an efficient method for estimating population

parameters for uncommon and cryptic plants.
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Introduction

Estimating the abundance and habitat associations of

plant populations is fundamental to a broad range of

ecological questions and for guiding conservation and

management. For uncommon and cryptic plants,

however, accurate estimates of population parameters

can be costly to obtain, and thus developing new more

efficient methods is useful. Although many species of

plants are readily detectable in the field, probability of

detecting individuals that are present and available for

sampling is rarely perfect and can vary with species’

traits and environmental and survey conditions (Chen

et al. 2009, 2013; Garrard et al. 2013; Junaedi et al.

2018). Understanding factors that influence the detec-

tion process can help guide survey and sampling

designs, and explicitly modeling these factors can

improve the accuracy of inferences (Buckland et al.

2001; Chen et al. 2009; Dénes et al. 2015). Plant

species that occur as scattered individuals have often

been surveyed with plot-less or point-based techniques

that are sometimes referred to as distance methods

(Cottam 1947; Cottam and Curtis 1956; Mueller-

Dombois and Ellenberg 1974; Elzinga et al. 1998). For

these species, such techniques are thought to be faster

and more flexible than plot-based methods, but can be

challenging to implement in field settings when

individuals are rare or cryptic (Elzinga et al. 1998;

Ducey 2018).

Distance sampling (DS) is a survey technique

similar to—but distinct from—traditional distance

methods in plant ecology. This approach involves

measuring distances to focal objects from sets of lines

or points, and modeling a detection function that

quantifies the decline in detection probability with

increasing distance from observers, and adjusts abun-

dance estimates for variation in detection probability

(Buckland et al. 2001; Thomas et al. 2010). In addition

to observed distances, other covariates of detection

probability such as individual (e.g., plant size), spatial,

and temporal factors can be incorporated into detec-

tion function. Hence, DS offers excellent flexibility

and can be tailored to specific traits of focal popula-

tions and their environment (Marques et al. 2007).

Application of DS has proven highly effective for

estimating abundance and habitat relationships of

wildlife, and been used across a broad range of

geographic regions and taxa (Thomas et al.

2002, 2010; Anderson et al. 2001; Rosenstock et al.

2002; Hounsome et al. 2005; Flesch et al. 2016).

Although commonly applied to wildlife, DS remains

largely untested for plants. To date, DS has been

applied to few plant systems (e.g., Buckland et al.

2007; Crase et al. 2010; Kissa and Sheil 2012; Schorr

2013), and its efficacy has not been tested based on

parametric values of plant abundance or used to

evaluate plant–habitat relationships.

We assessed the efficacy of DS for estimating

abundance of a rare plant in an arid environment. As a

case study, we considered the Pima pineapple cactus

(Coryphantha scheeri var. robustispina Britton and

Rose, Cactaceae; hereafter ‘‘PPC’’), an endangered

species in the Sonoran Desert of southwestern North

America. Like many species of concern, the PPC is

often surveyed for compliance with federal law and to

address conservation and recovery objectives. The

recommended survey method for this species, how-

ever, calls for a complete census of all individuals in a

given focal area, which is time intensive and costly

(Roller 1996a; USFWS 2007, 2018). In this and other

similar contexts, survey methods based on sampling

theory should be capable of accurately estimating

population size, distribution, and other parameters

with greater efficiency across larger areas.

We compared estimates of population size and

densities of the PPC derived from DS to values from

intensive recent censuses, and assessed the magnitude

of estimation bias and factors that explain bias.

Moreover, we evaluated factors that influence

detectability during DS and the resulting implications

for survey design. Finally, we assessed plant–habitat

relationships by modeling variation in local densities

and various environmental factors such as vegetation

structure and soil substrate size.

Materials and methods

Study system

The PPC is distributed narrowly in the eastern Sonoran

Desert of south-central Arizona and adjacent Sonora,

Mexico (Baker and Butterworth 2013). In Arizona, it

occurs near the ecotone of Sonoran desert-scrub and

semi-desert grasslands in the Altar and Santa Cruz

valleys (Fig. 1; USFWS 2018). Individuals are small

(B 46 cm in height), hemispherical succulents with

singular or clumped stems covered by 2–3-cm long
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rounded projections (USFWS 2018). Sonoran desert-

scrub is dominated by small leguminous trees such as

velvet mesquite (Prosopis velutina) and paloverde

(Parkinsonia sp.), shrubs such as creosote (Larrea

tridentata) and bursage (Ambrosia sp.), and various

cacti, grasses, and forbs (Turner and Brown 1982).

Semi-desert grassland is dominated by open wood-

lands of velvet mesquite and various grasses and sub-

shrubs such as burroweed (Isocoma tenuisecta) and

snakeweed (Gutierrezia sarothrae; Brown and Mak-

ings 2014).

In response to threats from urban development,

invasion of non-native grasses, wildfire, climate

change, and other stressors, the PPC was listed as

endangered in 1993 (USFWS 2007; Thomas et al.

2017). The recommended survey protocol for this

species attempts to census all individuals in a given

focal area (Roller 1996a). While this approach is

useful for compliance with U.S. federal law, it is

inefficient for other objectives and may be based on

unrealistic assumptions of perfect detection probabil-

ity. Such issues are especially relevant because

individuals are small, widely spaced, and sometimes

concealed by dense vegetation, which augments the

chances some individuals are undetected during

surveys. To guide conservation and recovery, efficient

survey techniques for estimating abundance across

large areas are needed together with data on habitat

associations.

Fig. 1 Plot locations and

approximate geographic

range (purple) of the Pima

pineapple cactus in southern

Arizona. Plots are (1)

Mendoza, (2) Anvil, (3) Guy

Street, (4) Stagecoach, (5)

Palo Alto, (6–8) Sopori 1–3,

(9) Canoa, and (10–11)

Sycamore 1–2
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Design

We implemented DS at sites across the northern range

of the PPC (Fig. 1), along broad natural gradients in

densities, and assessed estimation bias by comparing

abundance estimates from DS with values from

intensive censuses. We selected study plots where

either (1) repeated censuses and monitoring had

enumerated PPC abundances within &1 year, or (2)

the presence of PPC was known but abundances were

unknown and thus needed to be measured prior to DS.

For criteria one, we selected five plots in the Altar

Valley and two plots in the Santa Cruz Valley where

long-term monitoring began in the late 1990s and

2004, respectively (Fig. 1; see Appendix A, Supple-

mentary Materials, for details). For criteria two, we

selected four additional plots where observers differ-

ent from those that implemented DS completed

intensive censuses in the same year. To census plots,

multiple observers walked parallel lines 4–6 m apart

and exhaustively searched for cacti until plots were

completely covered (Roller 1996a). Within long-term

study plots (criteria one), all known cacti were

monitored and plots surveyed at 1–4-year intervals

with new individuals added to results. Thus, assuming

accuracy of past censuses and population closure,

populations within plots were completely enumerated

within &1 year of DS.

We systematically placed parallel lines 50 m apart

across plots and began DS from a random point on plot

boundaries. To guide survey design, we used estimates

from preliminary PPC surveys along 37 km of lines in

similar environments (Powell 2015, unpubl. data),

which found an effective strip half-width (distance

from the line at which the number of focal objects

missed within that distance equals the number

detected beyond that distance but within the truncation

distance; Buckland et al. 2015) of 8–13 m and

maximum detection distance of 25 m. To assess

environmental conditions along lines, we measured

various environmental factors, which are described

below, around points placed every 100 m (Fig. 2).

Surveys and measurements

For stationary objects, DS has two assumptions to

ensure accurate estimation: (1) perfect detection of

focal objects on survey lines (or at points), and (2)

accurate measurements of distances between lines and

objects. Moreover, lines should be placed indepen-

dently of focal objects so objects are uniformly

distributed with respect to distances from lines

(Buckland et al. 2015).

During DS, teams of two observers slowly walked

lines. One observer focused on and immediately

around lines, while another observer walked short

serpentine paths within &0–6 m of lines scanning

lines and surrounding areas (Fig. 2). Observers

inspected vegetation clumps near lines to ensure cacti

on lines were detected and looked behind them for

cacti to check for individuals obstructed from oncom-

ing directions. Because PPC sometimes occur in small

groups 10–30 m apart, before leaving lines to measure

detected cacti, observers scanned areas for additional

individuals. All surveys were during daylight hours

when the sun was well above the horizon and in winter

and early spring when cover of green grasses and forbs

was low.

We recorded the following data for each PPC: (1)

perpendicular distance from transect line to center of

cactus, (2) height of cactus (cm) from ground to top of

tallest spine, (3) width (cm) of cactus, (4) number of

pups or stems, (5) status of cactus (live or dead), and

(6) location based on GPS coordinates. We used

measuring tapes to estimate distances to the nearest

dm within 0–8 m of lines, or laser rangefinders to the

nearest m beyond 8 m, and used tapes to measure cacti

dimensions to the nearest 0.5 cm.

To assess the influence of potential covariates of

detection probability and quantify local environmental

conditions, we estimated environmental features

within 10-m-radius plots centered on points placed

every 100 m along lines (Fig. 2). We estimated (1)

vegetation volume from 0–1 m above ground, (2)

percent grass cover, (3) mean understory height of

vegetation, and (4) size class of dominant soil

substrate. Volume and cover were visually estimated

to the nearest 10% for values between 20 and 80% and

nearest 5% otherwise. When measuring volume, we

considered vegetation rooted within plots and assumed

100% volume around plant canopies. For grass cover,

we considered annual and perennial grasses rooted

within plots but excluded small prostrate species (e.g.,

Schismus sp.). For understory height, we visually

estimated the mean height of understory plants rooted

within plots, which included grasses, forbs, and sub-

shrubs but excluded succulents. For soil substrate size,

we considered three size classes: 1 for fine sand with
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few larger particles, 2 for coarser gravel with particles

up to about 1 cm diameter, and 3 for rocky substrate

with particles[ 2 cm diameter. For each plot we

noted dominant vegetation community as Sonoran

desert-scrub or semi-desert grassland. Subsequently,

we used the slope and interpolate shape tools in

ArcGIS 10.5.1 (ESRI 2017) to estimate elevation

(m) and slope (%) at each point based on a 3-m

resolution digital elevation model.

Analyses

To estimate abundance and density, we treated lines as

replicates and stratified by plot to facilitate estimates

at both scales, and then weighted by plot areas to

estimate overall population size across all plots.

Before analyses, we selected bin sizes of 2.5 m after

assessing histograms of distance data, and right

truncated 5% of observations. Binning can improve

model fit by effectively smoothing data, whereas

truncation constrains the tails of distributions, which

often include little information but require complex

adjustment terms to model that are rarely biologically

justified (Buckland et al. 2001; Thomas et al. 2010).

We used two strategies to estimate density, popu-

lation size, and detection probability of live individ-

uals. First, we used conventional distance sampling to

fit a detection function to all data. Second, we used

Fig. 2 Arrangement of transect lines (—) and environmental

sampling points (?) used to distance sample Pima pineapple

cactus (PPC) in southern Arizona, 2016–17. Inset shows

sampling strategy by each of two surveyors along lines, with

one surveyor focused on center lines, while a second surveyor

walked a sinuous path within 6 m of lines
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multiple-covariates distance sampling to fit detection

functions that included each covariate individually

and various additive combinations of covariates. As

covariates, we considered vegetation volume, grass

cover, understory height, soil substrate size, and slope

averaged among points along each line. To minimize

influence of extreme values, we log transformed slope.

To select the best approximating model, we ranked

models by Akaike information criteria corrected for

small sample sizes (AICc), evaluated shapes of

detection functions, precision of estimates, and good-

ness-of-fit among competitive models, and selected

the best overall model from which we made inferences

(Thomas et al. 2010). We considered uniform, half-

normal (HN), and hazard-rate (HR) detection func-

tions for models without covariates, and HN and HR

functions for models with covariates. When fitting HN

and HR functions, we considered models with B 2

cosine, simple polynomial, and hermite adjustment

terms. We used program Distance version 6.2 for all

calculations (Thomas et al. 2010). Although we

sampled without replacement and detected a relatively

large proportion of the focal population, finite popu-

lation correction factors were not applied but may be

appropriate here despite limited influence on estimates

of precision (see Buckland et al. 2001, p. 87).

To assess the efficacy of DS, we computed bias as

the percent difference between values from censuses

and estimates from DS within each plot and for the

overall population. To quantify the strength of linear

association between census values and estimates, we

computed Pearson correlation coefficients on both the

raw and log-transformed scales. To assess factors that

explained bias at the scale of plots, we used linear

regression with bias as a response variable, and

considered mean vegetation volume, grass cover,

understory height, soil substrate size, log slope,

elevation, PPC height, and plot area as potential

explanatory variables. Finally to compare effort

needed to complete DS versus censuses, we calculated

the total effort spent DS on a per ha basis and

compared to estimates for censuses based on data from

Roller (1996a), which indicates a minimum of 2.3

person hours are required per ha.

To assess environmental factors that explained

spatial variation in local densities among lines, we fit

linear-mixed effect models. To develop models, we fit

log density as a response variable and considered the

following potential explanatory factors: mean

vegetation volume, grass cover (log transformed), soil

substrate size, log slope, vegetation community, and

quadratic terms for all continuous factors. Understory

height was not considered because it was correlated

with vegetation volume, nor was elevation considered

because it was correlated with substrate size (r

C 0.65). Because the number of potential explanatory

factors was high and data to develop candidate models

a priori was limited, we used stepwise procedures with

mixed variable selection and the stepAIC function

from the MASS library in R (Venables and Ripley

2002; R Core Team 2016) to guide model selection.

We fit a random intercept for plot to adjust for

correlations among observations from lines within the

same plots, and fit models with the nlme library in R

(Pinheiro et al. 2012; R Core Team 2016). Data from

short lines (\ 200 m) needed to cover irregularly

shaped plots were censored because they contained

too few (0–2) environmental sampling points to

adequately describe local conditions.

Results

Effort and detections

We recorded 105 live and 15 dead PPC during DS

along 36.9 km of transects (n = 81 lines, mean ±

SE = 455 ± 17.9 m in length) across the 11 plots.

Distances between lines and cacti averaged

7.3 ± 0.6 m (range 0–31 m)with 75%of observations

within 10.3 m, and 2.5 m binning and 5% truncation

effectively smoothed data (Fig. 3). Although more

plots were in desert-scrub, total plot area was similar in

both vegetation communities (Table S1).

Detection probability

We fit 14 candidate models of detection functions

(Tables 1 and S2). Model selection provided strong

evidence that factors in addition to distance influenced

detection probability (P), as indicated by little support

for a model without covariates (DAICc = 4.55). The

top-rankedmodel included the covariate substrate size,

with P declining as soils became increasing dominated

by large particles (b ± SE = - 0.44 ± 0.19). At

10 m from lines, for example, P declined from 0.58

in areas with small- to moderate-sized substrates to

0.35 in areas with moderate- to large-sized substrates
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(Fig. 4). Although understory vegetation volume

(- 0.012 ± 0.0066), grass cover (- 0.008 ± 0.004),

and cactus height (0.045 ± 0.026) influenced P in the

expected directions when fit independently (Fig. 4),

therewas little evidence these factors improvedmodels

once substrate size was considered (Table 1). Under-

story vegetation height (- 0.0056 ± 0.0071) and

slope (- 0.091 ± 0.19) had no influence on P. Half-

normal key functions with cosine adjustment terms

provided the best fit.

Estimates of P from the top-ranked model averaged

0.49 (95% CI 0.42–0.56) with an effective strip half-

width of 9.7 m (95% CI 8.4–11.3; CV = 0.076). At

2 m from lines, P averaged 0.96 and declined to 0.92,

0.80, 0.43, and 0.06 at 3, 5, 10, and 20 m from lines,

respectively (Fig. 3).

Abundance and bias estimation

Across the entire population of plots, we estimated a

density of 1.47 live individuals/ha, and abundance of

294 individuals overall. Precision of estimates was

fairly high (CV = 0.139; Table 2). At the plot scale,

estimates of density (0.17–5.95 individuals/ha) and

abundance (3–125 individuals) ranged widely, with

much lower precision (Table 2). Estimates of popu-

lation size suggest we detected approximately 34% of

all individuals during DS.

Across all plots, DS provided relatively unbiased

estimates of both density and abundance, with

estimation bias averaging only - 2.3% overall. At

the scale of individual plots, however, estimates of

bias were higher (Table 2). Density estimates from DS

were also highly correlated with census values on both

the untransformed (r = 0.84, P = 0.002), and espe-

cially, logarithmic scales (r = 0.93, P\ 0.001;

Fig. 5). Bias decreased (e.g., changed from over to

underestimation) as substrate size (b ± SE = - 66.6

± 27.7, P = 0.040) and understory vegetation vol-

ume (- 3.3 ± 1.5, P = 0.050) increased. On average,

DS took 0.60 ± 0.06 person hours per ha to imple-

ment across plots (range 0.35–1.05) with effort

increasing linearly with plot-specific PPC densities

(b ± SE = 0.094 ± 0.022, P = 0.0019). Thus, we

estimate censuses would take a minimum of

4.2 ± 0.4 times more effort to complete on average

across the range of PPC densities we considered.

Fig. 3 Detection distances to 105 Pima pineapple cacti

observed during distance sampling in southern Arizona,

2016–2017, and resulting detection function model. Frequency

histograms of observations in 1- (top) and 2.5-m bins used for

modeling (middle) are shown. Detections at distances[ 20 m

shown as open bars were truncated before model fitting. Bottom

figure of top-ranked detection function model is the average

function conditioned on the covariates
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Plant–habitat relationships

We considered a total sample of 76 lines averaging

476 m (SE = 16) in length with densities ranging from

0 to 10.5 plants/ha (mean ± SE = 1.5 ± 0.2). Local

densities increased with increasing soil substrate size

and slope, and decreased with increasing understory

vegetation volume (Table 3). There was also some

Fig. 4 Influence of four

covariates on detection

probability of the Pima

pineapple cactus based on

distance sampling along

lines in southern Arizona,

2016–2017. Estimates are

from multiple-covariates

distance sampling with half-

normal key functions and

cosine adjustments.

Estimates are shown at

covariate levels equaled to

the lower, middle, and upper

quartiles. Inset box plots

show distributions of each

covariate

Table 1 Detection function models fit to estimate abundance of Pima pineapple cactus in southern Arizona, 2016–2017

Covariates K DAICc D

Substrate size 2 0.00 1.465

Substrate size ? grass cover 3 0.12 1.484

Cactus height ? substrate size ? grass cover 4 1.44 1.493

Cactus height ? substrate size 3 1.52 1.472

Substrate size ? vegetation volume 0–1 m 3 1.86 1.467

Cactus height ? grass cover 3 2.06 1.466

Vegetation volume 0–1 m 2 2.98 1.440

Grass cover 2 3.17 1.439

Cactus height 2 3.21 1.434

Cactus height ? grass cover ? veg. volume 0–1 m 4 3.85 1.470

None {CDS model} 1 4.55 1.406

Grass cover ? vegetation volume 0–1 m 3 4.87 1.443

Understory height 2 5.88 1.412

Slope (log) 2 6.41 1.408

All models are half-normal key functions with cosine adjustments; K is the number of parameters and D is estimated density (live

individuals/ha)
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evidence local densities were greater in semi-desert

grasslands than in desert-scrub, with densities aver-

aging 38.3 ± 17.2% greater in grasslands after con-

trolling for other factors. Local densities did not vary

with grass cover (P = 0.59) after considering factors

in the best approximating model.

Discussion

We validated a rarely used method for estimating the

abundance and density of plant populations. Our

study, focused on the endangered Pima pineapple

cactus (PPC) in the Sonoran Desert, indicates that

distance sampling (DS) can efficiently provide accu-

rate estimates of abundance, and insights into factors

that explain local variation in densities and detection

probability. Combined with results from a small

number of past applications of DS in plant systems,

our results indicate that DS is an efficient tool in this

and other similar systems, and useful for guiding

management and survey design. Distance sampling

has been used successfully to assess abundance and

detection probability (P) in animal systems, often at

much larger spatial scales than that considered here

(Thomas et al. 2002, 2010; Buckland et al. 2015;

Roberts et al. 2016). To our knowledge, however, this

study represents just its eighth application in a plant

system (Marsden and Pilgrim 2003; Buckland et al.

2007; Crase et al. 2010; Jensen and Meilby 2012;

Kissa and Sheil 2012; Schorr 2013; Phama et al. 2014;

Junaedi et al. 2018), and is the first to compare

estimates from DS with what we assumed were

parametric values of abundances from intensive

censuses.

Bias of abundance estimates from DS was very low

across the sampled population, averaging just 2.3%

underestimation. Importantly, magnitude of bias

seemed consistent across the entire range of abun-

dances we considered, except perhaps at lower

extremes, suggesting DS performs well across broad

spatial variation in abundance. Such results conform

generally to studies in animal populations (e.g.,

Focardi et al. 2005) where DS has accurately captured

major declines in densities despite lower precision at

low densities, but to our knowledge, no comparable

examples exist for plant populations. At very low

densities, small differences in estimates and paramet-

ric values can have marked effects on bias. In these

and other cases, stratification and fitting stratum as a

factor-type covariate should enhance precision by

explicitly modeling spatial differences in abundance

(Buckland et al. 2015).

Table 2 Comparison of estimates of density (D) and abundance (N) of the Pima pineapple cactus based on distance sampling at plot-

specific and population scales in southern Arizona, 2016–2017

Site Plot

area

(ha)

Census values Distance sampling estimates Bias (%)

Density

(no./ha)

Abundance Density

(no./ha)

Abundance CV No.

observed

Effort

(m)

No. of

lines

Density Abundance

Anvil 18.3 0.055 1 0.146 3 1.004 1 3525 7 167.4 200.0

Canoa 23.4 2.35 55 1.07 25 0.301 10 4825 8 - 54.6 - 54.5

Guy Street 23.8 0.168 4 0.179 4 0.733 2 5745 11 6.9 0.0

Mendoza 24.2 1.86 45 1.30 32 0.287 13 5133 10 - 29.8 - 28.9

Palo Alto 24.6 3.18 78 5.08 125 0.231 38 3902 10 60.0 60.3

Sopori-1 7.4 1.62 12 2.18 16 0.292 4 947 3 34.7 33.3

Sopori-2 8.0 3.86 31 1.56 12 0.452 6 1985 6 - 59.6 - 61.3

Sopori-3 4.0 5.53 22 5.95 24 0.302 10 866 4 7.6 9.1

Stagecoach 31.6 0.222 7 0.363 11 0.469 3 4252 8 64.1 57.1

Sycamore-1 16.7 1.86 31 1.72 29 0.342 9 2696 9 - 7.3 - 6.5

Sycamore-2 18.4 0.817 15 0.686 13 0.505 4 3003 7 - 16.0 - 13.3

All sites 200.4 1.50 301 1.47 294 0.139 100 36,878 83 - 2.3 - 2.3

Census values are from data in Appendix A (Supplementary Materials). Bias denotes % differences between census values and

estimates from distance sampling. Population-scale estimates are weighted by plot area
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Precision of estimates from DS was also fairly high

at population scales (CV = 0.139) even despite mod-

est sample sizes of 105 individuals along 81 lines. For

DS along lines, a recommended minimum of 60–80

focal objects (or clusters) are recommended for

unbiased estimation (Buckland et al. 2001). These

results and the broad range of natural variation in PPC

densities we considered (0.1–5.5 individuals/ha) sug-

gest DS can yield precise abundance estimates in a

range of contexts. Interestingly, our estimate of PPC

density (1.47 individuals/ha) was higher than range-

wide estimates of & 1 individual/ha (Baker 2013;

McDonald 2005) likely because we worked in areas

where PPC was known to occur.

Important assumptions of DS along lines include

perfect detection of focal objects on transect lines,

accurate distance measurements, and designs that

ensure lines are positioned independently of focal

objects. If individual plants are closely clustered,

distributions may not be sufficiently uniform with

respect to lines, especially in small plots (Buckland

et al 2007). In our study, frequency histograms of

detection distances declined monotonically with

increasing distance from lines, especially after data

were smoothed by binning. Such patterns suggest PPC

distribution is sufficiently uniform to eliminate issues

imposed by clustering (Buckland et al. 2007, 2015),

even though plants sometimes occurred in small

groups of individuals 5–20 m apart. In other systems,

more extreme clustering may require crossed designs

or more complex approaches (see Buckland et al.

2007), or cluster-based estimation where numbers of

individuals in clusters is used as detection covariate

(Thomas et al. 2010).

With regard to assumptions of perfect detectability

of focal objects on transect lines, there was some

evidence small plants obstructed by dense vegetation

and rocky substrates contributed to underestimation.

Nonetheless, the relative openness of arid environ-

ments and unique silhouette of PPC should adequately

mitigate these issues, especially when combined with

recommendations described below. In plant systems

such as ours where individual plants are small, often

cryptic, scattered over large areas, and thus easily

overlooked, DS should be an efficient method for

estimating spatiotemporal variation in abundance.

Several factors likely contributed to observed

estimation bias. First, while we assumed numbers

from past censuses represented parametric values of

population sizes, actual abundances were not known

exactly. Because plots were censused within& 1 year

of DS, the closure assumption (e.g., no recruitment or

mortality) was likely violated. Data from seven plots

that were intensively monitored over time indicate

abundance declined by an average rate of 7.3% per

year between 2002 and 2017 (Appendix A,

Fig. 5 Linear associations between estimated raw (no./ha; top)

and log (bottom) densities of the Pima pineapple cactus in

southern Arizona, 2016–2017 based on values from census and

estimates from distance sampling. Pearson correlation coeffi-

cients (r) are noted

123

Plant Ecol



SupplementaryMaterials). Thus, mortalities occurring

after recent censuses, but before DS, could explain

some observed bias. Individuals undetected during

censuses were occasionally found during subsequent

monitoring, because even by spacing observers 4–6 m

apart during census efforts (Roller 1996a), estimates

of P obtained here suggest 4–8% of individuals are

likely to be missed. Finally, although probably a very

minor source of bias in our study, ensuring distances

are measured precisely and perpendicularly to lines

will reduce bias (Marshall et al. 2008).

Detectability-corrected estimates of densities from

DS are often used to understand wildlife–habitat

relationships (Blank 2013; Miller et al. 2013; Flesch

et al. 2016; Roberts et al. 2016), but have not been

applied to plants. Past accounts of habitat relationships

of PPC often matched our inferences but sometimes

varied. Similar to our results for densities, McPherson

(2002) found positive associations between PPC

occurrence and larger soil substrates (gravel vs. sand),

whereas Kidder (2015) suggested sandy soils were

associated with larger cacti. The main pollinator of the

PPC is a solitary bee (Diadasia rinconis) that nests in

well-drained areas of bare ground and forages over

large areas (Ordway 1987; McDonald 2005; USFWS

2018). Thus, despite local associations with rockier

substrates, this species may require a diversity of soils

at larger scales. We found that PPC densities declined

with increasing grass cover matching observed asso-

ciations with open areas (Kidder 2015), but contrast-

ing one study that showed associations between

occurrence and moderate levels of herbaceous and

woody vegetation cover (McPherson 2002). More-

over, we found local densities increased with slope,

which may be partially due to the fact that areas with

higher slopes also often have larger soil substrates.

These patterns contrast lack of observed associations

between occurrence and specific landforms or slope

positions (McPherson 2002), and may not be biolog-

ically important given limited variation in slope across

plots we considered. Importantly, differences in the

scales of measurement and focal parameters among

studies may explain differences in observed habitat

associations. Regardless, our results illustrate the

application of DS for assessing plant–habitat

relationships.

Understanding factors that influence P is useful for

guiding survey design because optimal survey tech-

niques have a high and consistent probability of

detecting the target species and low sampling error

(Thompson et al. 1998; Williams et al. 2002).

Although few studies assess factors that influence

detectability of plants, traits such as color, flowering

time, leaf size, height, and observer ability can

influence the detection process (Chen et al. 2013;

Garrard et al. 2013; Junaedi et al. 2018).We found that

detectability during DS was explained by variation in

soil substrate size, with lower detectability on rockier

soils. Rocky substrates likely make cacti more difficult

to see by distorting their unique silhouette. There was

also some evidence detectability declined with

decreasing plant height and increasing understory

vegetation volume and grass cover, patterns we

suspect are biologically significant and would have

been stronger with greater sample sizes. These

patterns and the efficacy of DS in situations where

significant proportions of focal populations are unde-

tected support the application of DS for estimating

abundance of rare or cryptic plants.

Table 3 Factors that explained variation in local densities (log no./ha) of Pima pineapple cactus along 76 lines in southern Arizona,

2016–2017

Factor Estimate SE |t| P

Intercept - 0.90 0.33 2.73 0.008

Vegetation volume 0–1 m (%) - 0.021 0.006 3.19 0.002

Slope (log %) 0.69 0.21 3.34 0.001

Substrate size (rank) 0.40 0.17 2.31 0.024

Semi-desert grassland 0.38 0.17 2.22 0.053

Parameter estimates and standard errors (SE) are from a linear-mixed effects model with plot fit as a random intercept (r2 = 0.021

intercept; 0.268 residual)
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Recommendations

Despite promising results, various design considera-

tions and small modifications to the protocol used here

could further improve applications of DS in plant

systems. Though our results suggest that only approx-

imately 33% of cacti within plots were detected, one of

the strengths of DS is that it allows robust estimates of

density and population size even when a majority of

focal objects are not detected during surveys (Ander-

son et al. 2001; Buckland et al. 2001). Precision of

estimates from DS, however, is influenced by the

absolute number of observations and thus sampling

strategies that yield large sample sizes are optimal. In

systems where focal plants may be obstructed by

either live or dead vegetation, however, more effort on

and immediately around lines should improve accu-

racy. Such effort can be fostered by reducing walking

speeds and searching clumps of low vegetation along

lines. In our system, surveys on steep slopes and dense

vegetation along drainages were often difficult when

lines were parallel to elevation contours. Although

positioning lines perpendicular to contours will ame-

liorate these issues (Schorr 2013), to foster unbiased

estimates, investigators should ensure lines are placed

parallel to any existing density gradients of focal

objects, which can be assessed during pilot efforts

(Buckland et al. 2015). Finally, timing surveys when

focal plants are most detectable (e.g., flowering, in

leaf), associated vegetation is dormant or least

obstructive, and measuring factors thought to influ-

ence the detection process should further improve

efforts.

Although we focused on small plots to help foster

comparisons with known values of abundance, DS is

most powerful when applied at much larger spatial

scales (e.g., Flesch et al. 2016; Roberts et al. 2016),

where it can produce reliable estimates provided key

assumptions are met and a sufficient number of focal

objects are detected. Thus, future studies of plant

abundance and detection probability based on DS can

be framed much more extensively than the largely

intensive focus used here. While our results provide

strong support for the application of DS, additional

field work and simulations across a range of contexts

and efforts with populations where abundances are

known will be useful for guiding future efforts.
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Supplementary Material 

Appendix A: Methods and data sources used to compute known estimates of abundances of the 

Pima pineapple cactus, and to estimate population trends across time. 

 

Census results and methods—We used data from repeated censuses and long-term monitoring to 

identify individual cacti and to calculate population sizes of the Pima pineapple cactus within 

five plots in the Altar Valley and two plots in the Santa Cruz Valley. This process was aided by 

detailed databases and spatial coordinates of all live and dead cacti within plots across time. In 

addition to long-term monitoring data, we also included any new cacti not documented by past 

efforts but that we detected incidentally or during distance sampling in estimates of known 

population sizes.  

 In the Altar Valley, we considered five of six total plots that had been intensively censused 

and monitored since 2000 (Anvil, Guy, Mendoza, Palo Alto, and Stagecoach; Schmalzel 2000; 

Routson 2003; Baker 2013; Molano-Flores and Coons 2018). At the time of our distance 

sampling (DS) study, the most recent censuses for these five plots were from 2012 (Baker 2013). 

However, in 2017, Molano-Flores and Coons (2018) repeated censuses and monitoring of all five 

plots and provided updated estimates. We assumed that all live plants observed by Molano-

Flores and Coons (2018) in fall 2017 were also alive during our DS study in 2016, which is 

justified given they did not document any seedlings during their efforts. Due to the slow-growing 

nature of this plant, we can infer that all observed cacti were >1 year old at the time of 2017 

censuses, and likely substantially older. Cacti that we located during DS that had not been 

observed by Baker (2013) or by Molano-Flores and Coons (2018) were added to estimates of 

plot-specific abundances (Table 1). We also located five live Pima pineapple cacti on two plots 



that Molano-Flores and Coons (2018) subsequently observed as being dead in 2017, but included 

these individuals in our 2016 estimates of plot abundance. The Pima pineapple cactus is cryptic 

and easily overlooked, particularly when small. Thus we acknowledge some plots likely 

harbored live individuals present during our 2016 DS study, which were not detected during 

census efforts and thus are not accounted for. Nonetheless, given intensive repeated censuses and 

monitoring across time and our own efforts DS, plot-specific estimates of abundances we used 

represent the best known estimates of population sizes across the range of the taxon.    

 At two plots in the Santa Cruz Valley, we estimated numbers of live Pima pineapple cacti at 

the time of our DS study on both the Sycamore Canyon 1 and Sycamore Canyon 2 plots using 

monitoring data gathered by WestLand Resources, Inc. (2004, 2017). These plots were 

monitored annually between 2002 and 2008 (with the exception of 2003) and every four years 

after 2008. Both plots included cacti that had been transplanted from nearby developments, and 

cacti that have grown naturally on plots. For the purposes of estimating the total number of cacti 

within each plot that was present at the time of our DS study, we considered both natural and 

transplanted individuals. We completed DS surveys on these plots in February of 2016. 

Abundances reported by WestLand Resources, Inc. (2017) covered surveys that took place in 

September and December of 2016, as well as during January of 2017. We assume that all live 

PPC reported during these surveys were also alive and present during our DS surveys in 2016. 

We also included in our estimates of known population size, three individual cacti on each of the 

two plots that we detected during our DS study, that WestLand Resources, Inc. (2017) had not 

detected. WestLand Resources, Inc. (2017) reported two individuals on the Sycamore Canyon 1 

plot that were dead during their surveys during the latter part of 2016, while during our DS  



survey in the early part of 2016 both cacti were live. We included these two cacti in estimates of 

abundance.   

 At plots in the Santa Cruz Valley where we conducted censuses for the first time (Canoa and 

Sopori 1-3), estimates of known densities included all individuals discovered during censuses as 

well as any new cacti observed incidentally or during distance sampling. In all cases all 

surveyors had experience identifying the Pima pineapple cactus and practiced survey methods 

away from study plots prior to initiating surveys.     

 

Abundance trends—To gain insights into sources of potential bias between our estimates from 

distance sampling and known values from censuses, we estimated abundance trends of the Pima 

pineapple cactus within the seven long-term monitoring plots. We used data from Baker (2013), 

WestLand Resources (2014 and 2017), and Molano-Flores and Coons (2018) to assess 

population trends within study plots that had been monitored across time. For Pima pineapple 

cacti on the Sycamore Canyon 1 and Sycamore Canyon 2 plots monitored by WestLand 

Resources, Inc., we did not include cacti that had been transplanted onto plots from nearby areas 

when estimating trends. Rather we only used cacti that were growing on plots and had never 

been moved to estimate abundance trends. To estimate trends, we fit the following linear mixed-

effects model: 

yit = (β0+ b0i) + β1xit + εit,   εit ~N(0,σ2)  

where yit is a vector of observed log +1 transformed counts of the number of cacti in each plot in 

each year, β0 is an intercept for the population, b0i is a vector of random intercepts for each 

transect, β1 is a trend parameter for a fixed time effect, xit indicates the year of each observation 

for the ith plot centered at 0, and εit is an error term that has a normal distribution with a mean of 



zero and variance σ2 that measures observation variance. In this model all variance is assumed to 

be observation error. To model temporal autocorrelation, we used a first-order autoregressive 

structure and fit models with the nlme library in R. Data used to fit trend models are in Table 2.  

 Between 2002 and 2017, abundance declined by an estimated average of 7.3 ± 2.2% (± SE) 

per year (p = 0.0012) indicating strong evidence of a decline. Across time and assuming 

exponential population growth this equals a 67.9% decline in the overall population of cacti 

within plots. This is a major decline that has broad conservation implications for this endangered 

subspecies. Because plots were not selected at random these inferences pertain only to the plots 

themselves and not to the broader population of cacti across the range of the taxon.  
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Table 1. Abundance data of the Pima pineapple cactus from five plots in the Altar 
Valley of Arizona and 2 plots in the Santa Cruz Valley of Arizona used to estimate 
population trends across time. Data are from long-term monitoring and repeated 
censuses within plot boundaries 

Year Site No. ln No. 
2003 Anvil Tank 17 2.8903718 
2005 Anvil Tank 13 2.6390573 
2006 Anvil Tank 14 2.7080502 
2007 Anvil Tank 23 3.1780538 
2008 Anvil Tank 22 3.1354942 
2009 Anvil Tank 26 3.2958369 
2010 Anvil Tank 6 1.9459101 
2011 Anvil Tank 6 1.9459101 
2012 Anvil Tank 5 1.7917595 
2017 Anvil Tank 0 0.00 
2003 Guy Street 37 3.6375862 
2005 Guy Street 36 3.6109179 
2006 Guy Street 38 3.6635616 
2007 Guy Street 43 3.7841896 
2008 Guy Street 40 3.7135721 
2009 Guy Street 43 3.7841896 
2010 Guy Street 44 3.8066625 
2011 Guy Street 8 2.1972246 
2012 Guy Street 6 1.9459101 
2017 Guy Street 4 1.6094379 
2003 Mendoza 82 4.4188406 
2005 Mendoza 57 4.060443 
2006 Mendoza 63 4.1588831 
2007 Mendoza 63 4.1588831 
2008 Mendoza 66 4.2046926 
2009 Mendoza 65 4.1896547 
2010 Mendoza 76 4.3438054 
2011 Mendoza 65 4.1896547 
2012 Mendoza 71 4.2766661 
2017 Mendoza 40 3.7135721 
2003 Palo Alto 81 4.4067192 
2005 Palo Alto 72 4.2904594 
2006 Palo Alto 92 4.5325995 
2007 Palo Alto 92 4.5325995 
2008 Palo Alto 97 4.5849675 
2009 Palo Alto 94 4.5538769 
2010 Palo Alto 99 4.6051702 
2011 Palo Alto 86 4.4659081 



2012 Palo Alto 80 4.3944492 
2017 Palo Alto 70 4.2626799 
2003 Stagecoach 14 2.7080502 
2005 Stagecoach 11 2.4849066 
2006 Stagecoach 12 2.5649494 
2007 Stagecoach 12 2.5649494 
2008 Stagecoach 14 2.7080502 
2009 Stagecoach 11 2.4849066 
2010 Stagecoach 11 2.4849066 
2011 Stagecoach 9 2.3025851 
2012 Stagecoach 7 2.0794415 
2017 Stagecoach 7 2.0794415 
2002 Sycamore 1 12 2.5649494 
2004 Sycamore 1 12 2.5649494 
2005 Sycamore 1 14 2.7080502 
2006 Sycamore 1 14 2.7080502 
2007 Sycamore 1 14 2.7080502 
2008 Sycamore 1 12 2.5649494 
2012 Sycamore 1 12 2.5649494 
2016 Sycamore 1 12 2.5649494 
2002 Sycamore 2 19 2.9957323 
2004 Sycamore 2 20 3.0445224 
2005 Sycamore 2 33 3.5263605 
2006 Sycamore 2 30 3.4339872 
2007 Sycamore 2 29 3.4011974 
2008 Sycamore 2 27 3.3322045 
2012 Sycamore 2 20 3.0445224 
2016 Sycamore 2 20 3.0445224 

 
 

  



Table S1: Comparison of geographic, topographic, and vegetation factors at 11 plots where we implemented distance sampling for the 
Pima pineapple cactus in southern Arizona, 2016-17. Means and standard errors (SE; or range) are based on sample sizes (n) noted for 
each plots, which are based on measurements at points (elevation, slope), within 10 m of points (vegetation factors), or at the site scale 
(region, dominant vegetation community). Units for substrate size are: 1-fine sand with few larger particles, 2-coarser gravel with 
particles up to about 1 cm diameter, 3–rocky substrate with particles >2 cm diameter.  

Site Valley Community n 

Elevation (m)   Slope (%) 
 

Substrate Size 
 

Grass Cover (%) 
 

Vegetation Volume 
0-1 m (%) 

 

Understory Height 
(cm) 

Mean Range   Mean SE   Mean SE   Mean SE   Mean SE   Mean SE 

Anvil Altar Grassland 42 829 8 
 

1.5 0.1 
 

1.0 0.00 
 

13.7 2.5 
 

13.5 2.2 
 

14.1 1.6 

Canoa Santa Cruz Grassland 56 934 15 
 

3.7 0.2 
 

2.1 0.11 
 

64.3 4.0 
 

53.2 2.2 
 

63.5 2.5 

Guy Street Altar Desert-scrub 70 802 7 
 

1.8 0.1 
 

1.1 0.03 
 

1.1 0.3 
 

14.2 1.2 
 

10.3 0.8 

Mendoza Altar Grassland 66 978 18 
 

5.4 0.3 
 

1.9 0.08 
 

38.1 2.3 
 

25.5 1.9 
 

28.6 1.2 

Palo Alto Altar Grassland 48 890 20 
 

8.0 1.1 
 

1.7 0.11 
 

10.4 1.6 
 

22.4 2.4 
 

27.9 2.1 

Sopori-1 Santa Cruz Desert-scrub 14 991 9 
 

6.1 0.7 
 

2.2 0.15 
 

3.8 1.0 
 

25.0 5.1 
 

14.4 1.5 

Sopori-2 Santa Cruz Desert-scrub 30 992 11 
 

7.9 1.3 
 

2.2 0.16 
 

3.2 0.9 
 

24.2 2.8 
 

16.6 1.7 

Sopori-3 Santa Cruz Desert-scrub 14 985 11 
 

6.6 0.9 
 

2.0 0.00 
 

2.0 1.0 
 

15.5 2.7 
 

11.5 1.5 

Stagecoach Altar Desert-scrub 58 1,027 21 
 

3.2 0.1 
 

1.1 0.05 
 

3.9 0.5 
 

14.3 1.1 
 

13.9 1.1 

Sycamore-1 Santa Cruz Desert-scrub 36 1,083 14 
 

3.2 0.1 
 

2.7 0.09 
 

3.0 1.0 
 

31.9 3.0 
 

29.3 3.9 

Sycamore-2 Santa Cruz Desert-scrub 42 1,003 15   2.8 0.1   2.7 0.11   3.1 1.0   34.7 3.1   16.1 2.3 
 
  



Table S2: Candidate models of detection functions used to estimate density and abundance of the Pima pineapple cactus with 
distance sampling at 11 sites in southern Arizona, 2016-17.  K denotes the number of model parameters, D is estimated density 
(no. of live individuals/ha), CV is the coefficient of variation, N is total abundance or population size, LCL and UCL are lower and 
upper 95% confidence intervals, ESW is effective strip half-width, and P is average detection probability. Estimates are based on a 
sample of 105 cacti with 5% of observations truncated. All models are half normal key functions with cosine adjustments.  

 

Model        
Selection 

 
Density 

 
Abundance  

 
Detection 

Covariates K ΔAICc 
 

D D CV D LCL D UCL 
 

N N LCL N UCL 
 

ESW P 

Substrate Size 2 0.00 
 

1.465 0.139 1.109 1.937 
 

294 222 388 
 

9.71 0.485 

Substrate Size + Grass Cover 3 0.12 
 

1.484 0.140 1.120 1.965 
 

297 224 394 
 

9.59 0.479 

Cactus Height + Substrate Size + Grass Cover 4 1.44 
 

1.493 0.140 1.126 1.979 
 

299 226 397 
 

9.53 0.476 

Cactus Height + Substrate Size 3 1.52 
 

1.472 0.139 1.113 1.948 
 

295 223 390 
 

9.66 0.483 

Substrate Size + Vegetation Volume 0-1 m 3 1.86 
 

1.467 0.139 1.109 1.941 
 

294 222 389 
 

9.69 0.485 

Cactus Height + Grass Cover 3 2.06 
 

1.466 0.139 1.108 1.941 
 

294 222 389 
 

9.70 0.485 

Vegetation Volume 0-1 m 2 2.98 
 

1.440 0.138 1.091 1.901 
 

289 219 381 
 

9.88 0.494 

Grass Cover 2 3.17 
 

1.439 0.138 1.090 1.899 
 

288 218 381 
 

9.89 0.494 

Cactus Height 2 3.21 
 

1.434 0.138 1.087 1.893 
 

287 218 379 
 

9.92 0.496 

Cactus Height + Grass Cover + Veg. Volume 0-1 m 4 3.85 
 

1.470 0.140 1.109 1.947 
 

294 222 390 
 

9.68 0.484 

None {CDS model} 1 4.55 
 

1.406 0.141 1.059 1.866 
 

282 212 374 
 

10.12 0.506 

Grass Cover + Vegetation Volume 0-1 m 3 4.87 
 

1.443 0.138 1.092 1.907 
 

289 219 382 
 

9.85 0.493 

Understory Height  2 5.88 
 

1.412 0.137 1.072 1.860 
 

283 215 373 
 

10.07 0.504 

Slope (log) 2 6.41   1.408 0.136 1.069 1.853   282 214 371   10.11 0.505 
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