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Abstract    19 

Accurate abundance estimates of plant populations are fundamental to numerous ecological 20 

questions and for conservation. Estimating population parameters for rare or cryptic plant 21 

species, however, can be challenging and thus developing and testing new methods is useful. We 22 

assessed the efficacy of distance sampling for estimating abundance and habitat associations of 23 

the endangered Pima pineapple cactus (Coryphantha scheeri var. robustispina), a rare plant in 24 

the Sonoran Desert of southwestern North America that has traditionally been surveyed with 25 

census-based methods. Distance sampling (DS) involves measuring distances between focal 26 

objects and samples of lines or points, and modeling detection functions that adjust estimates for 27 

variation in detection probability (P). Although often used in animal systems, DS remains largely 28 

untested for plants. We encountered 105 live individuals along 36.9 km of transects in 11 study 29 

plots placed across much of the geographic range of the species, and estimated an average 30 

density of 1.47 individuals/ha (CV = 0.139). Compared to values from intensive censuses, 31 

density estimates from DS were underestimated by only 2.3% on average and highly correlated 32 

on the untransformed (r = 0.84) and logarithmic (r = 0.93) scales. Estimates of P averaged 0.49 33 

and declined as soils became increasingly dominated by larger soil substrates, and somewhat 34 

with increasing vegetation volume and decreasing cactus height. Local densities increased with 35 

increasing slope and soil substrate size and decreased with increasing vegetation volume (p ≤ 36 

0.024). Combined with careful survey design, DS offers an efficient method for estimating 37 

population parameters for uncommon and cryptic plants.  38 

 39 

Keywords   Abundance estimation • Detection probability • Distance sampling • Habitat • Pima 40 

pineapple cactus • Population size • Coryphantha scheeri var. robustispina   41 
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Introduction  42 

Estimating the abundance and habitat associations of plant populations is fundamental to a broad 43 

range of ecological questions and for guiding conservation and management. For uncommon and 44 

cryptic plants, however, accurate estimates of population parameters can be costly to obtain, and 45 

thus developing new more efficient methods is useful. Although many species of plants are 46 

readily detectable in the field, probability of detecting individuals that are present and available 47 

for sampling is rarely perfect and can vary with species’ traits, and environmental and survey 48 

conditions (Chen et al., 2009, 2013; Garrard et al. 2013; Junaedi et al. 2018). Understanding 49 

factors that influence the detection process can help guide survey and sampling designs, and 50 

explicitly modeling these factors can improve the accuracy of inferences (Buckland et al. 2001; 51 

Chen et al. 2009; Dénes et al. 2015). Plant species that occur as scattered individuals have often 52 

been surveyed with plot-less or point-based techniques that are sometimes referred to as distance 53 

methods (Cottam 1947; Cottam and Curtis 1956; Mueller-Dombois and Ellenberg 1974; Elzinga 54 

et al. 1998). For these species, such techniques are thought to be faster and more flexible than 55 

plot-based methods, but can be challenging to implement in field settings when individuals are 56 

rare or cryptic (Elzinga et al. 1998; Ducey 2018).         57 

Distance sampling (DS) is a survey technique similar to—but distinct from—traditional 58 

distance methods in plant ecology. This approach involves measuring distances to focal objects 59 

from sets of lines or points, and modeling a detection function that quantifies the decline in 60 

detection probability with increasing distance from observers, and adjusts abundance estimates 61 

for variation in detection probability (Buckland et al. 2001; Thomas et al. 2010). In addition to 62 

observed distances, other covariates of detection probability such as individual (e.g., plant size), 63 

spatial, and temporal factors can be incorporated into detection function. Hence, DS offers 64 
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excellent flexibility and can be tailored to specific traits of focal populations and their 65 

environment (Marques et al. 2007). Application of DS has proven highly effective for estimating 66 

abundance and habitat relationships of wildlife, and been used across a broad range of 67 

geographic regions and taxa (Thomas et al. 2002, 2010; Anderson et al. 2001; Rosenstock et al. 68 

2002; Hounsome et al. 2005; Flesch et al. 2016). Although commonly applied to wildlife, DS 69 

remains largely untested for plants. To date, DS has been applied to few plant systems (e.g., 70 

Buckland et al. 2007; Crase et al. 2010; Kissa and Sheil 2012; Schorr 2013), and its efficacy has 71 

not been tested based on parametric values of plant abundance or used to evaluate plant-habitat 72 

relationships.  73 

 We assessed the efficacy of DS for estimating abundance of a rare plant in an arid 74 

environment. As a case study, we considered the Pima pineapple cactus (Coryphantha scheeri 75 

var. robustispina Britton and Rose, Cactaceae; hereafter “PPC”), an endangered species in the 76 

Sonoran Desert of southwestern North America. Like many species of concern, the PPC is often 77 

surveyed for compliance with federal law and to address conservation and recovery objectives. 78 

The recommended survey method for this species, however, calls for a complete census of all 79 

individuals in a given focal area, which is time intensive and costly (Roller 1996a; USFWS 80 

2007, 2018). In this and other similar contexts, survey methods based on sampling theory should 81 

be capable of accurately estimating population size, distribution, and other parameters with 82 

greater efficiency across larger areas.  83 

 We compared estimates of population size and densities of the PPC derived from DS to 84 

values from intensive recent censuses, and assessed the magnitude of estimation bias and factors 85 

that explain bias. Moreover, we evaluated factors that influence detectability during DS and the 86 

resulting implications for survey design. Finally, we assessed plant-habitat relationships by 87 
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modeling variation in local densities and various environmental factors such as vegetation 88 

structure and soil substrate size. 89 

 90 

Materials and Methods 91 

Study system  92 

The PPC is distributed narrowly in the eastern Sonoran Desert of south-central Arizona and 93 

adjacent Sonora, Mexico (Baker and Butterworth 2013). In Arizona, it occurs near the ecotone of 94 

Sonoran desert-scrub and semi-desert grasslands in the Altar and Santa Cruz valleys (Fig. 1; 95 

USFWS 2018). Individuals are small (≤46 cm in height), hemispherical succulents with singular 96 

or clumped stems covered by 2-3-cm long rounded projections (USFWS 2018). Sonoran desert-97 

scrub is dominated by small leguminous trees such as velvet mesquite (Prosopis velutina) and 98 

paloverde (Parkinsonia sp.), shrubs such as creosote (Larrea tridentata) and bursage (Ambrosia 99 

sp.), and various cacti, grasses, and forbs (Turner and Brown 1982). Semi-desert grassland is 100 

dominated by open woodlands of velvet mesquite and various grasses and sub-shrubs such as 101 

burroweed (Isocoma tenuisecta) and snakeweed (Gutierrezia sarothrae; Brown and Makings 102 

2014). 103 

 In response to threats from urban development, invasion of non-native grasses, wildfire, 104 

climate change, and other stressors, the PPC was listed as endangered in 1993 (USFWS 2007; 105 

Thomas et al. 2017). The recommended survey protocol for this species attempts to census all 106 

individuals in a given focal area (Roller 1996a). While this approach is useful for compliance 107 

with U.S. federal law, it is inefficient for other objectives and may be based on unrealistic 108 

assumptions of perfect detection probability. Such issues are especially relevant because 109 

individuals are small, widely spaced, and sometimes concealed by dense vegetation, which 110 
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augments the chances some individuals are undetected during surveys. To guide conservation 111 

and recovery, efficient survey techniques for estimating abundance across large areas are needed 112 

together with data on habitat associations.     113 

 114 

Design  115 

We implemented DS at sites across the northern range of the PPC (Fig. 1), along broad natural 116 

gradients in densities, and assessed estimation bias by comparing abundance estimates from DS 117 

with values from intensive censuses. We selected study plots where either: 1) repeated censuses 118 

and monitoring had enumerated PPC abundances within ≈1 year, or 2) presence of PPC was 119 

known but abundances were unknown and thus needed to be measured prior to DS. For criteria 120 

one, we selected five plots in the Altar Valley and two plots in the Santa Cruz Valley where 121 

long-term monitoring began in the late 1990s and 2004, respectively (Fig. 1; see Appendix A for 122 

details). For criteria two, we selected four additional plots where observers different from those 123 

that implemented DS completed intensive censuses in the same year. To census plots, multiple 124 

observers walked parallel lines 4-6 m apart and exhaustively searched for cacti until plots were 125 

completely covered (Roller 1996a). Within long-term study plots (criteria one), all known cacti 126 

were monitored and plots surveyed at 1-4 year intervals with new individuals added to results. 127 

Thus, assuming accuracy of past censuses and population closure, populations within plots were 128 

completely enumerated within ≈1 year of DS.  129 

 We systematically placed parallel lines 50-m apart across plots and began DS from a random 130 

point on plot boundaries. To guide survey design, we used estimates from preliminary PPC 131 

surveys along 37 km of lines in similar environments (B. Powell, unpubl. data), which found an 132 

effective strip half-width (distance from the line at which the number of focal objects missed 133 
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equals the number detected beyond that distance but within the truncation distance; Buckland et 134 

al. 2015) of 8-13 m and maximum detection distance of 25 m. To assess environmental 135 

conditions along lines, we measured various environmental factors, which are described below, 136 

around points placed every 100 m (Fig. 2). 137 

 138 

Surveys and measurements 139 

For stationary objects, DS has two assumptions to ensure accurate estimation: 1) perfect 140 

detection of focal objects on survey lines (or at points), and 2) accurate measurements of 141 

distances between lines and objects. Moreover, lines should be placed independently of focal 142 

objects so objects are uniformly distributed with respect to distances from lines (Buckland et al. 143 

2015).  144 

 During DS, teams of two observers slowly walked lines. One observer focused on and 145 

immediately around lines while another observer walked short serpentine paths within ≈0-6 m of 146 

lines scanning lines and surrounding areas (Fig. 2). Observers inspected vegetation clumps near 147 

lines to ensure cacti on lines were detected and looked behind them for cacti to check for 148 

individuals obstructed from oncoming directions. Because PPC sometimes occur in small groups 149 

10-30 m apart, before leaving lines to measure detected cacti, observers scanned areas for 150 

additional individuals. All surveys were during daylight hours when the sun was well above the 151 

horizon and in winter and early spring when cover of green grasses and forbs was low.  152 

 We recorded the following data for each PPC: 1) perpendicular distance from transect line to 153 

center of cactus, 2) height of cactus (cm) from ground to top of tallest spine, 3) width (cm) of 154 

cactus, 4) number of pups or stems, 5) status of cactus (live or dead), and 6) location based on 155 

GPS coordinates. We used measuring tapes to estimate distances to the nearest dm within 0-8 m 156 
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of lines, or laser rangefinders to the nearest m beyond 8 m, and used tapes to measure cacti 157 

dimensions to the nearest 0.5 cm. 158 

 To assess the influence of potential covariates of detection probability and quantify local 159 

environmental conditions, we estimated environmental features within 10-m radius plots 160 

centered on points placed every 100 m along lines. We estimated: 1) vegetation volume from 0-1 161 

m above ground, 2) percent grass cover, 3) mean understory height of vegetation, and 4) size 162 

class of dominant soil substrate. Volume and cover were visually estimated to the nearest 10% 163 

for values between 20-80% and nearest 5% otherwise. When measuring volume, we considered 164 

vegetation rooted within plots and assumed 100% volume around plant canopies. For grass 165 

cover, we considered annual and perennial grasses rooted within plots but excluded small 166 

prostrate species (e.g., Schismus sp.). For understory height, we visually estimated the mean 167 

height of understory plants rooted within plots, which included grasses, forbs, and sub-shrubs but 168 

excluded succulents. For soil substrate size, we considered three size classes; 1 for fine sand with 169 

few larger particles, 2 for coarser gravel with particles up to about 1 cm diameter, and 3 for 170 

rocky substrate with particles >2 cm diameter. For each plot we noted dominant vegetation 171 

community as Sonoran desert-scrub or semi-desert grassland. Subsequently, we used the slope 172 

and interpolate shape tools in ArcGIS 10.5.1 (ESRI 2017) to estimate elevation (m) and slope 173 

(%) at each point based on a 3-m resolution digital elevation model. 174 

 175 

Analyses 176 

To estimate abundance and density, we treated lines as replicates and stratified by plot to 177 

facilitate estimates at both scales, and then weighted by plot areas to estimate overall population 178 

size across all plots. Before analyses, we selected bin sizes of 2.5 m after assessing histograms of 179 
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distance data, and right truncated 5% of observations. Binning can improve model fit by 180 

effectively smoothing data whereas truncation constrains the tails of distributions, which often 181 

include little information but require complex adjustment terms to model that are rarely 182 

biologically justified (Buckland et al. 2001; Thomas et al. 2010). 183 

 We used two strategies to estimate density, population size, and detection probability of live 184 

individuals. First, we used conventional distance sampling to fit a detection function to all data. 185 

Second, we used multiple-covariates distance sampling to fit detection functions that included 186 

each covariate individually and various additive combinations of covariates. As covariates, we 187 

considered vegetation volume, grass cover, understory height, soil substrate size, and slope 188 

averaged among points along each line. To minimize influence of extreme values, we log 189 

transformed slope. To select the best approximating model, we ranked models by Akaike 190 

information criteria corrected for small sample sizes (AICc), evaluated shapes of detection 191 

functions, precision of estimates, and goodness-of-fit among competitive models, and selected 192 

the best overall model from which we made inferences (Thomas et al. 2010). We considered 193 

uniform, half-normal (HN), and hazard-rate (HR) detection functions for models without 194 

covariates, and HN and HR functions for models with covariates. When fitting HN and HR 195 

functions, we considered models with ≤2 cosine, simple polynomial, and hermite adjustment 196 

terms. We used program Distance version 6.2 for all calculations (Thomas et al. 2010). Although 197 

we sampled without replacement and detected a relatively large proportion of the focal 198 

population, finite population correction factors were not applied but may be appropriate here 199 

despite limited influence on estimates of precision (see Buckland et al. 2001:87).  200 

 To assess the efficacy of DS, we computed bias as the percent difference between values 201 

from censuses and estimates from DS within each plot and for the overall population. To 202 
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quantify the strength of linear association between census values and estimates, we computed 203 

Pearson correlation coefficients on both the raw and log-transformed scales. To assess factors 204 

that explained bias at the scale of plots, we used linear regression with bias as a response 205 

variable, and considered mean vegetation volume, grass cover, understory height, soil substrate 206 

size, log slope, elevation, PPC height, and plot area as potential explanatory variables. Finally to 207 

compare effort needed to complete DS vs. censuses, we calculated the total effort spent DS on a 208 

per ha basis and compared to estimates for censuses based on data from Roller (1996a), which 209 

indicates a minimum of 2.3 person hrs are required per ha.  210 

 To assess environmental factors that explained spatial variation in local densities among 211 

lines, we fit linear-mixed effect models. To develop models, we fit log density as a response 212 

variable and considered the following potential explanatory factors:  mean vegetation volume, 213 

grass cover (log transformed), soil substrate size, log slope, vegetation community, and quadratic 214 

terms for all continuous factors. Understory height was not considered because it was correlated 215 

with vegetation volume, nor was elevation considered because it was correlated with substrate 216 

size (r ≥ 0.65). Because the number of potential explanatory factors was high and data to develop 217 

candidate models a priori was limited, we used stepwise procedures with mixed variable 218 

selection and the stepAIC function from the MASS library in R (Venables and Ripley 2002; R 219 

Core Team 2016) to guide model selection. We fit a random intercept for plot to adjust for 220 

correlations among observations from lines within the same plots, and fit models with the nlme 221 

library in R (Pinheiro et al. 2012, R Core Team 2016). Data from short lines (<200 m) needed to 222 

cover irregularly shaped plots were censored because they contained too few (0-2) environmental 223 

sampling points to adequately describe local conditions. 224 

 225 
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Results 226 

Effort and detections  227 

We recorded 105 live and 15 dead PPC during DS along 36.9 km of transects (n = 81 lines, mean 228 

± SE = 455 ± 17.9 m in length) across the 11 plots. Distances between lines and cacti averaged 229 

7.3 ± 0.6 m (range 0-31 m) with 75% of observations within 10.3 m, and 2.5 m binning and 5% 230 

truncation effectively smoothed data (Fig. 3). Although more plots were in desert-scrub, total 231 

plot area was similar in both vegetation communities (Table S1).  232 

 233 

Detection probability 234 

We fit 14 candidate models of detection functions (Tables 1 and S2). Model selection provided 235 

strong evidence that factors in addition to distance influenced detection probability (P), as 236 

indicated by little support for a model without covariates (ΔAICc = 4.55). The top-ranked model 237 

included the covariate substrate size, with P declining as soils became increasing dominated by 238 

large particles (β ± SE = -0.44 ± 0.19). At 10 m from lines, for example, P declined from 0.58 in 239 

areas with small- to moderate-sized substrates to 0.35 in areas with moderate- to large-sized 240 

substrates (Fig. 4). Although understory vegetation volume (-0.012 ± 0.0066), grass cover (-241 

0.008 ± 0.004), and cactus height (0.045 ± 0.026) influenced P in the expected directions when 242 

fit independently (Fig. 4), there was little evidence these factors improved models once substrate 243 

size was considered (Table 1). Understory vegetation height (-0.0056 ± 0.0071) and slope (-244 

0.091 ± 0.19) had no influence on P. Half-normal key functions with cosine adjustment terms 245 

provided the best fit. 246 

 Estimates of P from the top-ranked model averaged 0.49 (95% CI=0.42-0.56) with an 247 

effective strip half-width of 9.7 m (95% CI=8.4-11.3; CV=0.076). At 2 m from lines, P averaged 248 
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0.96 and declined to 0.92, 0.80, 0.43, and 0.06 at 3, 5, 10, and 20 m from lines, respectively (Fig. 249 

3).  250 

 251 

Abundance and bias estimation  252 

Across the entire population of plots, we estimated a density of 1.47 live individuals/ha, and 253 

abundance of 294 individuals overall. Precision of estimates was fairly high (CV= 0.139; Table 254 

2). At the plot scale, estimates of density (0.17-5.95 individuals/ha) and abundance (3-125 255 

individuals) ranged widely, with much lower precision (Table 2). Estimates of population size 256 

suggest we detected approximately 34% of all individuals during DS. 257 

 Across all plots, DS provided relatively unbiased estimates of both density and abundance, 258 

with estimation bias averaging only -2.3% overall. At the scale of individual plots, however, 259 

estimates of bias were higher (Table 2). Density estimates from DS were also highly correlated 260 

with census values on both the untransformed (r = 0.84, p = 0.002), and especially, logarithmic 261 

scales (r = 0.93, p < 0.001; Fig. 5). Bias decreased (e.g., changed from over to underestimation) 262 

as substrate size (β ± SE = -66.6 ± 27.7, p = 0.040) and understory vegetation volume (-3.3 ± 1.5, 263 

p = 0.050) increased. On average, DS took 0.60 ± 0.06 person hrs per ha to implement across 264 

plots (range = 0.35-1.05) with effort increasing linearly with plot-specific PPC densities (β ± SE 265 

= 0.094 ± 0.022, p = 0.0019). Thus, we estimate censuses would take a minimum of 4.2 ± 0.4 266 

times more effort to complete on average across the range of PPC densities we considered. 267 

  268 

Plant-habitat relationships 269 

We considered a total sample of 76 lines averaging 476 m (SE = 16) in length with densities 270 

ranging from 0 to 10.5 plants/ha (mean ± SE = 1.5 ± 0.2). Local densities increased with 271 
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increasing soil substrate size and slope, and decreased with increasing understory vegetation 272 

volume (Table 3). There was also some evidence local densities were greater in semi-desert 273 

grasslands than in desert-scrub, with densities averaging 38.3 ± 17.2% greater in grasslands after 274 

controlling for other factors. Local densities did not vary with grass cover (p = 0.59) after 275 

considering factors in the best approximating model. 276 

 277 

Discussion 278 

We validated a rarely used method for estimating the abundance and density of plant 279 

populations. Our study, focused on the endangered Pima pineapple cactus (PPC) in the Sonoran 280 

Desert, indicates that distance sampling (DS) can efficiently provide accurate estimates of 281 

abundance, and insights into factors that explain local variation in densities and detection 282 

probability. Combined with results from a small number of past applications of DS in plant 283 

systems, our results indicate that DS is an efficient tool in this and other similar systems, and 284 

useful for guiding management and survey design. Distance sampling has been used successfully 285 

to assess abundance and detection probability (P) in animal systems, often at much larger spatial 286 

scales than that considered here (Thomas et al. 2002, 2010; Buckland et al. 2015; Roberts et al. 287 

2016). To our knowledge, however, this study represents just its eighth application in a plant 288 

system (Marsden and Pilgrim 2003; Buckland et al. 2007; Crase et al. 2010; Jensen and Meilby 289 

2012; Kissa and Sheil 2012; Schorr 2013; Phama et al. 2014; Junaedi et al. 2018), and is the first 290 

to compare estimates from DS with what we assumed were parametric values of abundances 291 

from intensive censuses.  292 

 Bias of abundance estimates from DS was very low across the sampled population, averaging 293 

just 2.3% underestimation. Importantly, magnitude of bias seemed consistent across the entire 294 
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range of abundances we considered, except perhaps at lower extremes, suggesting DS performs 295 

well across broad spatial variation in abundance. Such results conform generally to studies in 296 

animal populations (e.g., Focardi et al. 2005) where DS has accurately captured major declines in 297 

densities despite lower precision at low densities, but to our knowledge, no comparable examples 298 

exist for plant populations. At very low densities, small differences in estimates and parametric 299 

values can have marked effects on bias. In these and other cases, stratification and fitting stratum 300 

as a factor-type covariate should enhance precision by explicitly modeling spatial differences in 301 

abundance (Buckland et al. 2015).  302 

 Precision of estimates from DS was also fairly high at population scales (CV= 0.139) even 303 

despite modest sample sizes of 105 individuals along 81 lines. For DS along lines, a 304 

recommended minimum of 60-80 focal objects (or clusters) are recommended for unbiased 305 

estimation (Buckland et al. 2001). These results and the broad range of natural variation in PPC 306 

densities we considered (0.1-5.5 individuals/ha), suggests DS can yield precise abundance 307 

estimates in a range of contexts. Interestingly, our estimate of PPC density (1.47 individuals/ha) 308 

was higher than range-wide estimates of ≈1 individual/ha (Baker 2013; McDonald 2005) likely 309 

because we worked in areas where PPC was known to occur. 310 

 Important assumptions of DS along lines include perfect detection of focal objects on 311 

transect lines, accurate distance measurements, and designs that ensure lines are positioned 312 

independently of focal objects. If individual plants are closely clustered, distributions may not be 313 

sufficiently uniform with respect to lines, especially in small plots (Buckland et al 2007). In our 314 

study, frequency histograms of detection distances declined monotonically with increasing 315 

distance from lines, especially after data were smoothed by binning. Such patterns suggest PPC 316 

distribution is sufficiently uniform to eliminate issues imposed by clustering (Buckland et al. 317 
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2007, 2015), even though plants sometimes occurred in small groups of individuals 5-20 m apart. 318 

In other systems, more extreme clustering may require crossed designs or more complex 319 

approaches (see Buckland et al. 2007), or cluster-based estimation where numbers of individuals 320 

in clusters is used as detection covariate (Thomas et al. 2010). 321 

 With regard to assumptions of perfect detectability of focal objects on transect lines, there 322 

was some evidence small plants obstructed by dense vegetation and rocky substrates contributed 323 

to underestimation. Nonetheless, the relative openness of arid environments and unique 324 

silhouette of PPC should adequately mitigate these issues, especially when combined with 325 

recommendations described below. In plant systems such as ours where individual plants are 326 

small, often cryptic, scattered over large areas, and thus easily overlooked, DS should be an 327 

efficient method for estimating spatiotemporal variation in abundance.  328 

 Several factors likely contributed to observed estimation bias. First, while we assumed 329 

numbers from past censuses represented parametric values of population sizes, actual 330 

abundances were not known exactly. Because plots were censused within ≈1 year of DS, the 331 

closure assumption (e.g., no recruitment or mortality) was likely violated. Data from seven plots 332 

that were intensively monitored over time indicate abundance declined by an average rate of 333 

7.3% per year between 2002 and 2017 (Appendix A). Thus, mortalities occurring after recent 334 

censuses, but before DS, could explain some observed bias. Individuals undetected during 335 

censuses were occasionally found during subsequent monitoring, because even by spacing 336 

observers 4-6 m apart during census efforts (Roller 1996a), estimates of P obtained here suggest 337 

4-8% of individuals are likely to be missed. Finally, although probably a very minor source of 338 

bias in our study, ensuring distances are measured precisely and perpendicularly to lines will 339 

reduce bias (Marshall et al. 2008).  340 
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 Detectability-corrected estimates of densities from DS are often used to understand wildlife-341 

habitat relationships (Blank 2013; Miller et al. 2013; Flesch et al. 2016; Roberts et al. 2016), but 342 

have not been applied to plants. Past accounts of habitat relationships of PPC often matched our 343 

inferences but sometimes varied. Similar to our results for densities, McPherson (2002) found 344 

positive associations between PPC occurrence and larger soil substrates (gravel vs. sand), 345 

whereas Kidder (2015) suggested sandy soils were associated with larger cacti. The main 346 

pollinator of the PPC is a solitary bee (Diadasia rinconis) that nests in well-drained areas of bare 347 

ground and forages over large areas (Ordway 1987; McDonald 2005; USFWS 2018). Thus, 348 

despite local associations with rockier substrates, this species may require a diversity of soils at 349 

larger scales. We found that PPC densities declined with increasing grass cover matching 350 

observed associations with open areas (Kidder 2015), but contrasting with one study that showed 351 

associations between occurrence and moderate levels of herbaceous and woody vegetation cover 352 

(McPherson 2002). Moreover, we found local densities increased with slope, which may be 353 

partially due to the fact that areas with higher slopes also often have larger soil substrates. These 354 

patterns contrast lack of observed associations between occurrence and specific landforms or 355 

slope positions (McPherson 2002), and may not be biologically important given limited variation 356 

in slope across plots we considered. Importantly, differences in the scales of measurement and 357 

focal parameters among studies may explain differences in observed habitat associations. 358 

Regardless, our results illustrate the application of DS for assessing plant-habitat relationships. 359 

  Understanding factors that influence P is useful for guiding survey design because optimal 360 

survey techniques have a high and consistent probability of detecting the target species and low 361 

sampling error (Thompson et al. 1998; Williams et al. 2002). Although few studies assess factors 362 

that influence detectability of plants, traits such as color, flowering time, leaf size, height, and 363 
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observer ability can influence the detection process (Chen et al. 2013; Garrard et al. 2013; 364 

Junaedi et al. 2018). We found that detectability during DS was explained by variation in soil 365 

substrate size, with lower detectability on rockier soils. Rocky substrates likely make cacti more 366 

difficult to see by distorting their unique silhouette. There was also some evidence detectability 367 

declined with decreasing plant height and increasing understory vegetation volume and grass 368 

cover, patterns we suspect are biologically significant and would have been stronger with greater 369 

sample sizes. These patterns and the efficacy of DS where significant proportions of focal 370 

populations are undetected, support the application of DS for estimating abundance of rare or 371 

cryptic plants. 372 

 373 

Recommendations 374 

Despite promising results, various design considerations and small modifications to the protocol 375 

used here could further improve applications of DS in plant systems. Though our results suggest 376 

that only approximately 33% of cacti within plots were detected, one of the strengths of DS is 377 

that it allows robust estimates of density and population size even when a majority of focal 378 

objects are not detected during surveys (Anderson et al. 2001; Buckland et al. 2001). Precision of 379 

estimates from DS, however, are influenced by the absolute number of observations and thus 380 

sampling strategies that yield large sample sizes are optimal. In systems where focal plants may 381 

be obstructed by either live or dead vegetation, however, more effort on and immediately around 382 

lines should improve accuracy. Such effort can be fostered by reducing walking speeds and 383 

searching clumps of low vegetation along lines. In our system, surveys on steep slopes and dense 384 

vegetation along drainages were often difficult when lines were parallel to elevation contours. 385 

Although positioning lines perpendicular to contours will ameliorate these issues (Schorr 2013), 386 
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to foster unbiased estimates, investigators should ensure lines are placed parallel to any existing 387 

density gradients of focal objects, which can be assessed during pilot efforts (Buckland et al. 388 

2015). Finally, timing surveys when focal plants are most detectable (e.g., flowering, in leaf, 389 

etc.), associated vegetation is dormant or least obstructive, and measuring factors thought to 390 

influence the detection process should further improve efforts.      391 

 Although we focused on small plots to help foster comparisons with known values of 392 

abundance, DS is most powerful when applied at much larger spatial scales (e.g., Flesch et al. 393 

2016; Roberts et al. 2016), where it can produce reliable estimates provided key assumptions are 394 

met and a sufficient number of focal objects are detected. Thus, future studies of plant abundance 395 

and detection probability based on DS can be framed much more extensively than the largely 396 

intensive focus used here. While our results provide strong support for the application of DS, 397 

additional field work and simulations across a range of contexts and efforts with populations 398 

where abundances are known, will be useful for guiding future efforts.      399 
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Table 1  Detection function models fit to estimate abundance of Pima 

pineapple cactus in southern Arizona, 2016-17.  All models are half normal 

key functions with cosine adjustments; K is the number of parameters and D 

is estimated density (live individuals/ha).  

Covariates K ΔAICc D 

 Substrate Size 2 0.00 1.465 

 Substrate Size + Grass Cover 3 0.12 1.484 

 Cactus Height + Substrate Size + Grass Cover 4 1.44 1.493 

 Cactus Height + Substrate Size 3 1.52 1.472 

 Substrate Size + Vegetation Volume 0-1 m 3 1.86 1.467 

 Cactus Height + Grass Cover 3 2.06 1.466 

 Vegetation Volume 0-1 m 2 2.98 1.440 

 Grass Cover 2 3.17 1.439 

 Cactus Height 2 3.21 1.434 

 Cactus Height + Grass Cover + Veg. Volume 0-1 m 4 3.85 1.470 

 None {CDS model} 1 4.55 1.406 

 Grass Cover + Vegetation Volume 0-1 m 3 4.87 1.443 

 Understory Height  2 5.88 1.412 

 Slope (log) 2 6.41 1.408   
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Table 2  Comparison of estimates of density (D) and abundance (N) of the Pima pineapple cactus based on distance sampling at plot-538 

specific and population scales in southern Arizona, 2016-17. Census values are from data in Appendix A. Bias denotes % differences 539 

between census values and estimates from distance sampling. Population-scales estimates are weighted by plot area. 540 

   
Census Values 

 
Distance Sampling Estimates 

 
Bias (%) 

Site 

Plot 
Area 
(ha)   

Density 
(no./ha) Abundance   

Density 
(no./ha) Abundance CV 

No. 
Observed 

Effort 
(m) 

No. of 
Lines   Density  Abundance  

Anvil 18.3 
 

0.055 1 
 

0.146 3 1.004 1 3,525 7 
 

167.4 200.0 

Canoa 23.4 
 

2.35 55 
 

1.07 25 0.301 10 4,825 8 
 

-54.6 -54.5 

Guy Street 23.8 
 

0.168 4 
 

0.179 4 0.733 2 5,745 11 
 

6.9 0.0 

Mendoza 24.2 
 

1.86 45 
 

1.30 32 0.287 13 5,133 10 
 

-29.8 -28.9 

Palo Alto 24.6 
 

3.18 78 
 

5.08 125 0.231 38 3,902 10 
 

60.0 60.3 

Sopori-1 7.4 
 

1.62 12 
 

2.18 16 0.292 4 947 3 
 

34.7 33.3 

Sopori-2 8.0 
 

3.86 31 
 

1.56 12 0.452 6 1,985 6 
 

-59.6 -61.3 

Sopori-3 4.0 
 

5.53 22 
 

5.95 24 0.302 10 866 4 
 

7.6 9.1 

Stagecoach 31.6 
 

0.222 7 
 

0.363 11 0.469 3 4,252 8 
 

64.1 57.1 

Sycamore-1 16.7 
 

1.86 31 
 

1.72 29 0.342 9 2,696 9 
 

-7.3 -6.5 

Sycamore-2 18.4 
 

0.817 15 
 

0.686 13 0.505 4 3,003 7 
 

-16.0 -13.3 

All Sites 200.4   1.50 301   1.47 294 0.139 100 36,878 83   -2.3 -2.3 
  541 
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Table 3 Factors that explained variation in local densities (log no./ha) of Pima 542 

pineapple cactus along 76 lines in southern Arizona, 2016-17. Parameter 543 

estimates and standard errors (SE) are from a linear mixed-effects model with 544 

plot fit as a random intercept (σ2 = 0.021 intercept; 0.268 residual).   545 

Factor Estimate SE |t| p 

Intercept -0.90 0.33 2.73 0.008 

Vegetation Volume 0-1 m (%) -0.021 0.006 3.19 0.002 

Slope (log %) 0.69 0.21 3.34 0.001 

Substrate Size (rank) 0.40 0.17 2.31 0.024 

Semi-desert Grassland  0.38 0.17 2.22 0.053 

  546 
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Figure Captions  547 

 548 

Fig. 1  Plot locations and approximate geographic range (purple) of the Pima pineapple cactus in 549 

southern Arizona. Plots are: 1) Mendoza, 2) Anvil, 3) Guy Street, 4) Stagecoach, 5) Palo Alto 6-550 

8) Sopori 1-3, 9) Canoa, and 10-11) Sycamore 1-2. 551 

 552 

Fig. 2  Arrangement of transect lines (---) and environmental sampling points (+) used to 553 

distance sample Pima pineapple cactus (PPC) in southern Arizona, 2016-17. Inset shows 554 

sampling strategy by each of two surveyors along lines, with one surveyor focused on center 555 

lines, while a second surveyor walked a sinuous path within 6 m of lines.  556 

 557 

Fig. 3  Detection distances to 105 Pima pineapple cacti observed during distance sampling in 558 

southern Arizona, 2016-17, and resulting detection function model. Frequency histograms of 559 

observations in 1- (top) and 2.5-m bins used for modeling (middle) are shown. Detections at 560 

distances >20 m shown as open bars were truncated before model fitting. Bottom figure of top-561 

ranked detection function model is the average function conditioned on the covariates. 562 

 563 

Fig. 4  Influence of four covariates on detection probability of the Pima Pineapple Cactus based 564 

on distance sampling along lines in southern Arizona, 2016-17. Estimates are from multiple-565 

covariates distance sampling with half normal key functions and cosine adjustments. Estimates 566 

are shown at covariate levels equaled to the lower, middle, and upper quartiles. Inset box plots 567 

show distributions of each covariate 568 

 569 
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Fig. 5  Linear associations between estimated raw (no./ha; top) and log (bottom) densities of the 570 

Pima pineapple cactus in southern Arizona, 2016-17. Pearson correlation coefficients (r) are 571 

noted.  572 
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