RESEARCH ARTICLE

Vertical distribution of herpetofauna in the Rincon Mountains, Arizona

Dale S. Turner, Madrean Resources, Tucson, AZ; dale.turner2021@gmail.com

Aaron D. Flesch, School of Natural Resources and the Environment, The Desert Laboratory on Tumamoc Hill, University of Arizona, Tucson, AZ; flesch@email.arizona.edu

Don E. Swann, Saguaro National Park, Tucson, AZ; Don_Swann@nps.gov

Among the joys of herpetology in the sky islands of Arizona and Sonora is the way amphibian and reptile species are distributed along gradients of elevation. Species appear or disappear as one travels from low deserts to high mountains, along gradients of temperature, moisture, vegetation, and other key elements of their ecological niche.

Beginning in 2000, we had the privilege to work on a biological inventory effort of the Rincon Mountains in Saguaro National Park. One result was the publication "Herpetofauna of the Rincon Mountains, Arizona" (Flesch et al. 2010), which described species richness, distribution, and relative abundance among 46 species of amphibians and reptiles. That paper was based on approximately 4,000 observations during the warm seasons of 2001 and 2002 that resulted from surveys of randomly-located intensive plots, non-plotbased extensive surveys, and incidental observations. Here, we include a list of species observed during that study, updated with current taxonomy and species detected subsequently (Table 1).

Our paper did not include a key figure that summarized the elevational distribution of each species. This figure (shown here as Figure 1) was prepared and included in our initial submission to the journal, but was deleted during the editorial review process.

We offer this figure now because it is useful for understanding the distributional ecology of herpetofauna in the region, and as a baseline for monitoring potential distributional shifts driven by climate change. Such shifts have not been assessed in our region but could be occurring in the ~20 years since our work.

Several groups of congeneric species show clear segregation across elevation. This is no surprise, and can be gleaned from any good field guide. But field guides generally cover wide areas such as states (e.g., Holycross et al. 2022) or large parts of continents (e.g., Stebbins 2003) where the broad influence of latitude and regional climate can obscure local patterns. Among such relationships in our data, we note the vertical segregation among three species of spiny lizards (Sceloporus magister, S. clarkii, and S. tristichus), two horned lizards (Phrynosoma hernandesi and P. solare), and three rattlesnakes (Crotalus atrox, C. cerberus, and C. tigris). The associated horizontal distributions of those groups are shown in Figure 2. In contrast, we did not find vertical segregation among three whiptail lizard (Aspidoscelis burti, A. sonorae, A. tigris), or two whipsnake (Masticophis flagellum and M. bilineatus) species.

The growing body of evidence on the impacts of climate change on herpetofauna (e.g., Sinervo et al. 2010, Lara-Reséndiz et al. 2015, Flesch et al. 2017) has raised concerns for the long-term conservation of many species. While there is an expectation that some species in isolated mountain ranges such as the Rincons will respond to a warming climate by shifting to higher elevations (Parmesan 2006), other species at the upper elevational limits of their range may be at risk of extirpation because there is nowhere further upslope to go. Our dataset provides an elevational snapshot of an entire community that has value for monitoring potential elevational shifts and identifying local refugia that are important for conservation and management in future studies of the herpetofauna of the Rincon Mountains.

Literature cited

- Flesch, A.D., D.E. Swann, D.S. Turner, and B.F. Powell. 2010. Herpetofauna of the Rincon Mountains, Arizona. Southwestern Naturalist 55:240-253.
- Flesch, A.D., P.C. Rosen, and P. Holm. 2017. Longterm changes in abundances of Sonoran Desert lizards reveal complex responses to climatic variation. Global Change Biology 23:5492-5508.
- Holycross, A.T., T.C. Brennan, and R.D. Babb. 2022.A field guide to amphibians and reptiles in Arizona, second edition. Arizona Game and Fish Dept., Phoenix, AZ. 165 pp.
- Lara-Reséndiz, R.A., H. Gadsden, P.C. Rosen, B. Sinervo, and F.R. Méndez-De la Cruz. 2015. Thermoregulation of two sympatric species of horned lizards in the Chihuahuan Desert and their local extinction risk. Journal of Thermal Biology 48:1-10.
- Parmesan, C. 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37:637-669.
- Sinervo, B., F. Mendez-De-La-Cruz, D.B. Miles, B. Heulin, E. Bastiaans, M. Villagrán-Santa Cruz, R. Lara-Resendiz, N. Martínez-Méndez, M.L. Calderón-Espinosa, R.N. Meza-Lázaro, and H. Gadsden. 2010. Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894-899.
- Stebbins, R.C. 2003. A field guide to western reptiles and amphibians. Third edition. Houghton Mifflin Co., New York, NY. 533 pp.

Among the joys of herpetology in the sky islands of Arizona and Sonora is the way amphibian and reptile species are distributed along gradients of elevation. Species appear or disappear as one travels from low deserts to high mountains, along gradients of temperature, moisture, vegetation, and other key elements of their ecological niche.

Table 1. Herpetofauna currently known to occur in and around the Rincon Mountain District of Saguaro National Park, Pima County, Arizona. Count shows observations during our study (2001–2002), but list includes subsequent observations by park staff and visitors. Taxonomy follows Holycross et al. (2022).

Class	Order/Suborder	Scientific Name	Common Name	# Seen
Amphibia	Anura	Anaxyrus punctatus	Red-Spotted Toad	306
		Hyla arenicolor	Canyon Treefrog	262
		Incilius alvarius	Sonoran Desert Toad	262
		Rana yavapaiensis	Lowland Leopard Frog	136
		Scaphiopus couchii	Couch's Spadefoot	46
Reptilia	Testudines	Kinosternon sonoriense	Sonora Mud Turtle	55
		Gopherus morafkai	Sonoran Desert Tortoise	29
	Lacertilia	Aspidoscelus burti	Giant Spotted Whiptail	7
		Aspidoscelus sonorae	Sonoran Spotted Whiptail	331
		Aspidoscelus tigris	Tiger Whiptail	75
		Callisaurus draconoides	Zebra-Tailed Lizard	109
		Coleonyx variegatus	Western Banded Gecko	46
		Cophosaurus texanus	Greater Earless Lizard	107
		Crotaphytus collaris	Eastern Collared Lizard	29
		Elgaria kingii	Madrean Alligator Lizard	7
		Heloderma suspectum	Gila Monster	45
		Holbrookia elegans	Elegant Earless Lizard	8
		Phrynosoma hernandesi	Greater Short-Horned Lizard	30
		Phrynosoma solare	Regal Horned Lizard	22
		Plestiodon obsoletus	Great Plains Skink	2
		Sceloporus clarkii	Clark's Spiny Lizard	342
		Sceloporus magister	Desert Spiny Lizard	126
		Sceloporus tristichus	Eastern Fence Lizard	226
		Urosaurus ornatus	Ornate Tree Lizard	783
		Uta stansburiana	Common Side-Blotched Lizard	141
	Serpentes	Crotalus atrox	Western Diamond-Backed Rattlesnake	79
		Crotalus cerberus	Arizona Black Rattlesnake	27
		Crotalus molossus	Western Black-Tailed Rattlesnake	26
		Crotalus tigris	Tiger Rattlesnake	36
		Diadophis punctatus	Ring-Necked Snake	1
		Hypsiglena chlorophaea	Desert Nightsnake	7
		Lampropeltis knoblochi	Madrean Mountain Kingsnake	3
		Lampropeltis spendida	Desert Kingsnake	2
		Masticophis bilineatus	Sonoran Whipsnake	20
		Masticophis flagellum	Coachwhip	16
		Micruroides euryxanthus	Sonoran Coralsnake	1
		Pituophis catenifer	Gophersnake	6
		Rhinocheilus lecontei	Long-Nosed Snake	11
		Salvadora grahamiae	Eastern Patch-Nosed Snake	5
		Salvadora hexalepis	Western Patch-Nosed Snake	4
		Sonora semiannulata	Western Groundsnake	2
		Thamnophis cyrtopsis	Black-Necked Gartersnake	110
		Trimorphodon lambda	Sonoran Lyresnake	0

Elevation (m) 2700 1400 2000 2200 2400 2500 2600 1100 1200 1300 1500 1600 1800 1900 2100 2300 1000 1700 800 900 Anaxyrus punctatus 0 0 0 Incilius alvarius 0 0 Hyla arenicolor 0 00 O 0 0 Rana yavapaiensis op) 0 Scaphiopus couchii Observation 0 Kinosternon sonoriense \odot ၀တ Median . Gopherus morafkai $0 \mod 0$ \diamond Mean Aspidoscelis burti ♦ 0 Aspidoscelis sonorae Aspidoscelis tigris 0 Callisaurus draconoides 0 Coleonyx variegatus Cophosaurus texanus 0 С Crotaphytus collaris 0 0 000 0 Elgaria kingii 0 0 0 0 ◇ ♠ Heloderma suspectum 0 00 00 0 Holbrookia elegans 0 🐼 0 Phrynosoma hernandesi 0 $\infty \sim \infty \circ \infty$ Phrynosoma solare 0 0 Plestiodon obsoletus \diamond Sceloporus clarkii 00 $\alpha\alpha$ Sceloporus magister Sceloporus tristichus 0 00 Urosaurus ornatus 00 0 0 Uta stansburiana 0 Crotalus atrox Crotalus cerberus 0 00000 Δ $\hat{\mathbf{n}}$ $\alpha \alpha$ 0 Crotalus molossus $\Diamond \infty \Diamond$ 0 00 m 0 ∞∞∞∞∞> ∞ ∘ ∘ ∘ Crotalus tigris 0 **Diadophis punctatus** \diamond Hypsiglena chlorophaea $\circ \diamond \circ$ Lampropeltis knoblochi \diamond Lampropeltis spendida $\circ \diamond \circ$ Masticophis bilineatus ၀တာစထ 0 ∞ ♦ ♦ 0 0000 000 Masticophis flagellum 000000000 Micruroides euryxanthus \diamond Pituophis catenifer 0 0 0 0 Rhinocheilus lecontei © ∞ > 0 Salvadora grahamiae 0 ∞ Salvadora hexalepis 0 ∞ Sonora semiannulata 0 0 \diamond Thamnophis cyrtopsis \bigcirc ∞ \circ 00

Fig. 1. Elevational distribution of 42 species of herpetofauna detected along an 1,800 m elevation gradient in Saguaro National Park, Rincon Mountain District, 2001-2002. Each circle is a single observation (*n* = 3,944). Taxonomy follows Holycross et al. (2022).

Fig. 2. Distribution of species in three genera that replaced one another across an elevational gradient in Saguaro National Park, Rincon Mountain District, Pima County, Arizona: **a**) *Crotalus atrox, C. cerberus*, and *C. tigris* (a fourth species, *C. molossus*, occurred at 869-1,918 m, which includes the range of these other species but is omitted for clarity); **b**) *Phrynosoma hernandesi*, *P. solare*; **c**) *Sceloporus clarkii*, *S. magister*, and *S. tristichus*. Elevational contours are shown in 300-meter intervals. Revised from Flesch et al. (2010).

Copyright © Notice: Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)