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 Abstract: Investigations of processes that drive animal distribution and abundance are 
often approached at one of two different scales and therefore focus on different processes. 
At local scales, animals are thought to select home ranges or territory patches in an ideal 
manner by occupying them in order of their fitness potential, but a variety of processes 
can decouple choices from their fitness consequences and create non-ideal patterns of 
distribution. At landscape scales, the spatial arrangement of habitat patches and their size 
and isolation are thought to influence distribution patterns because extinction probability 
declines with increasing patch area and colonization probability declines with increasing 
patch isolation. Although understanding the relative effects of local and landscape 
processes on distribution is essential for conservation, very few studies have explicitly 
considered the fitness potential or quality of habitat when doing so, especially at small 
scales relevant to the behavioral choices of individuals. I integrated behavioral and 
landscape approaches for understanding distribution by assessing the relative and 
combined effects of habitat quality at territory-specific scales and the effects of habitat 
amount, habitat configuration, and matrix structure at landscape scales on long-term 
occupancy dynamics of Ferruginous Pygmy-Owls over 12 years. To quantify habitat 
quality, I considered the estimated additive and interactive effects of habitat resources, 
stochastic factors (e.g., weather), and conspecific density on reproductive output based on 
extensive demographic monitoring over 10 years in the same territory patches.  
 Habitat resources explained a much greater proportion of variation in reproductive 
output than weather or conspecifics, but realized habitat quality was best described by the 
interactive effects of all these factors. High-quality habitats buffered the negative effects 
of conspecifics and amplified the benefits of favorable weather, but did not buffer the 
disadvantages of harsh weather. The positive, density-independent effects of favorable 
weather at low conspecific densities were offset by intraspecific competition at high 
densities. Habitat quality had greater effects than landscape processes on patch 
occupancy dynamics, and its effects were best described by interactions among habitat 
resources, weather, and conspecifics. Nonetheless landscape factors also had important 
effects: habitat amount had greater effects than habitat fragmentation or matrix structure, 
effects that were either positive or negative depending on local habitat quality. Although 
metapopulation theory is the dominant paradigm upon which many conservation 
strategies are based, improving local habitat quality may yield greater returns, especially 
when the surrounding landscape context is considered.      
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PREFACE 

 Application of ecological theory to conservation is of profound and increasing 

importance given global threats to biodiversity and accelerating anthropogenic changes to 

the biosphere. One of the most pressing questions in applied ecology involves the relative 

effects of local versus landscape processes in driving animal distribution and abundance. 

Local processes are those that affect the birth and death rates of individuals at small 

spatiotemporal scales such as within individual home ranges. In contrast, landscape 

processes are those that typically affect movement and colonization of individuals among 

home ranges and population persistence at much larger landscape or metapopulation 

spatiotemporal scales. Ecologists working at small scales have focused on how the 

quality or fitness potential of habitat drives settlement choices by individuals when 

investigating broader patterns of distribution. In contrast, those working at larger 

landscape scales often focus on how the area and isolation of habitat and the structure of 

the intervening matrix of non-habitat affect distribution. Conservation and management 

recommendations that result from these studies are almost entirely dependent on the 

processes considered. Studies at large scales, for example, often suggest that increasing 

habitat area or connectivity will be beneficial. In contrast, studies at small scales often 

recommend strategies focused on enhancing specific resources that affect settlement 

choices or habitat quality. Although habitat quality, habitat area, and functional 

connectivity among patches of habitat are now widely recognized as the core drivers of 

animal distribution, effective conservation strategies depend on understanding the relative 

importance and integrated effects of these processes. Thus, the broad goal of my work is 

to explore the effects of local and landscape processes in driving the distribution and 
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abundance of animals across space and time. While this is a conceptually attractive 

problem, addressing it has been difficult due to logistical and methodological challenges 

in estimating the fitness potential of space. Here, I provide a synthetic multi-scaled 

approach for understanding core processes that drive animal distribution by estimating 

habitat quality at local patch-specific scales and the individual, relative, and combined 

effects of habitat quality, habitat area, and functional connectivity on distribution.  

 As a study system, I considered Ferruginous Pygmy-Owls (Glaucidium brasilianum) 

in the Sonoran Desert region of northwest Mexico, which is immediately south of 

Arizona. This system has a number of advantageous properties. First, because 

detectability is nearly perfect, patch occupancy and abundance can be efficiently 

estimated with standardized techniques. Second, landscape processes should affect 

distribution in this system because pygmy-owls are non-migratory, disperse relatively 

short distances, and because movement behavior and colonization success during 

dispersal are affected by landscape structures such as roadways and agricultural fields. 

Finally, because pygmy-owls have declined to endangered levels in adjacent Arizona 

despite the presence of habitat, understanding the relative roles of local and landscape 

processes in driving distribution has important implications for management and 

recovery. In Arizona, pygmy-owls were listed as endangered in 1997, delisted for reasons 

unrelated to recovery in 2006, and are the focal species behind a major controversy 

between land developers and conservationists. In the late 1990s, a large proportion of the 

Arizona population of pygmy-owls that was known at the time, occupied developed and 

undeveloped areas around Tucson on lands of high economic and conservation value. 

Although the controversy has largely subsided with the loss of federal regulations linked 
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to endangered status, the Arizona population is extremely small and has been extirpated 

around Tucson since 2006. Nonetheless, the pygmy-owl remains a focal species in 

regional conservation plans in southern Arizona and many unresolved questions 

regarding their ecology remain. This dissertation addresses some of these questions. 

 Each chapter I present builds on the preceding one by providing information and 

support upon which new questions are asked and answered. The research described 

herein relies heavily on papers I published during my second year in the graduate 

program at the University of Montana. These papers, which are not presented here, 

described the patterns and consequences of resource selection and showed that resource 

choices in this system are largely adaptive (Flesch and Steidl 2010), and assessed 

movement behavior and colonization success of dispersing individuals and showed that 

anthropogenic disturbance and landscape structure affect these parameters (Flesch et al. 

2010; see Chapter 1 for literature cited). The chapters in this dissertation are formatted as 

individual publications for specific peer-reviewed scientific journals. Because one 

chapter was largely a collaborative effort (Chapter 2), I have listed collaborators as co-

authors and use the collective “we” in that chapter. 

 The first paper (Chapter 1) entitled “Spatiotemporal trends and drivers of population 

dynamics in a declining Neotropical owl” describes population trends and population 

structure over a 12-year period and shows how temporal variation in weather and spatial 

variation in habitat and land use affected population dynamics. The second paper 

(Chapter 2) entitled “Spatial, temporal, and density-dependent components of habitat 

quality for Ferruginous Pygmy-Owls” explicitly estimates the fitness potential of space at 

the scale of individual territory patches by considering the effects of important habitat 
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resources, temporal factors such as weather and primary productivity, and conspecific 

density. Although habitat quality is a fundamental concept in ecology, and is essential for 

understanding distribution, the relative and interactive effects of habitat resources, 

weather, and conspecifics in driving it are rarely investigated simultaneously in wild 

animal populations. This chapter, which is a long paper intended to be published as 

monograph, also addresses the relative importance of food and predation in driving 

performance, how the effects of conspecifics vary at different spatial scales, and how 

interactive relationships between habitat resources and weather can inform conservation 

and management in changing climates.  The third paper (Chapter 3) entitled “Integrating 

behavioral and landscape approaches for understanding animal distribution” assesses the 

relative and combined effects of local (habitat quality, ecological traps) and landscape 

(habitat area, habitat fragmentation, matrix structure) processes on the distribution of 

owls across space. To address this problem, I consider long-term occupancy dynamics of 

owls measured over 12 years in 112 territory patches across broad gradients in habitat 

quality and landscape structure in a large number of independent landscapes. My 

approach is novel because I explicitly estimated the fitness potential or quality of space 

based on the effects of important habitat resources, stochastic factors, and conspecific 

density on vital rates at the scale of individual territory patches while simultaneously 

assessing the effects of landscape processes. During the last decade, landscape and 

metapopulation approaches have suggested an important role of habitat quality in driving 

animal distribution, thereby broadening the area-isolation focus that has dominated these 

approaches. Nonetheless, virtually all studies that consider habitat quality use indirect 

proxies based on resources that are thought to be important in driving vital rates rather 
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than direct estimates of vital rates, which as I show has likely underestimated the role of 

habitat quality in driving distribution.  

 
  



 

 
 

 

 

 

CHAPTER 1 

SPATIOTEMPORAL TRENDS AND DRIVERS OF POPULATION DYNAMICS IN A 

DECLINING NEOTROPICAL OWL 

  



 

2 
 

Abstract. Estimates of population trends are useful for managers, but understanding 

processes that drive trends is vital for guiding management, especially of rare or at-risk 

species. Inferences on population trends an extinction risk are often affected by 

observation error and process noise and, thus, approaches for addressing these sources of 

error have important implications for trend detection and management. I used time-series 

data and two approaches that make different assumptions about observation error and 

process noise to evaluate population trends and population structure of Ferruginous 

Pygmy-Owls (Glaucidium brasilianum) in northwest Mexico over 12 years. I also 

assessed how temporal variation in weather and spatial variation in habitat affected 

dynamics, which has important implications for managers, especially in adjacent Arizona 

where pygmy-owls have declined to endangered levels. Both approaches revealed 

declining trends in abundance but estimates from multivariate state-space models, which 

explicitly partitioned observation error and process noise were steeper (-2.8%/yr) with 

much lower precision (SE=3.6%) than those from mixed-effects models (-1.9%/yr, 

SE=0.8%), which assumed no process noise and indicated higher levels of population 

structure. Abundance increased markedly with annual precipitation at a lag time of two 

years and decreased with brooding-season temperature at a lag time of one year, and 

dynamics were largely synchronous across space, which is typical in climate-forced 

systems. Abundance was consistently higher and varied less across time in areas with 

more potential nest cavities, greater structural complexity and quantity of riparian 

vegetation, and lower intensity of anthropogenic land use, suggesting these factors are 

important drivers of habitat quality and good targets for managers. Given predictions for 

intensifying drought and warming temperatures associated with climate change, these 

results suggest active measures to enhance habitat quality can augment recovery 
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prospects. 

Key words: ferruginous pygmy-owl, habitat quality, observation error, population 

trends, process error, state-space models, weather. 

INTRODUCTION 

Understanding temporal variation in animal abundance is a longstanding issue in ecology 

(Turchin 1995). In applied contexts, information on temporal variation in abundance is 

important for assessing population trends and extinction risk. Effective management 

responses to observed trends, however, also require understanding factors that drive 

population dynamics, especially for rare or at-risk species. A broad range of exogenous 

factors such as weather, predation, and habitat loss can drive population dynamics and 

these effects may depend on intrinsic factors such as age structure or population density 

(Turchin 2003). Given these complexities, identifying mechanisms that drive population 

dynamics may require experimental approaches in field settings that are logistically 

difficult (Bjørnstad and Grenfell 2001). Most data on populations, however, exist in the 

form of time series of abundance estimates and associated environmental data, which can 

provide important insights into processes that drive dynamics, especially when guided by 

hypotheses based on the biology of a system.   

 Time-series data indicate strong associations between weather and population 

dynamics in a broad range of systems (Stenseth et al. 2002). In arid environments, for 

example, precipitation can directly affect plant productivity and exert complex indirect 

effects on populations at various trophic levels and lag times (Holmgren et al. 2006). 

Even when weather is important, however, intrinsic factors can mediate its effects 

(Pelletier et al. 2012). One aspect of individual heterogeneity that has received less 

attention in the context of population dynamics but that has important implications for 
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management is spatial variation in resources available to different individuals in a 

population (Reid et al. 2006, Ozgul et al. 2007). Because individuals with access to high-

quality habitat may be less susceptible to harsh weather (Franklin et al. 2000), identifying 

resources that explain temporal variation in abundance should help focus managers, 

especially in changing climates. 

 Despite the importance of information on population dynamics and factors that drive 

it, two general sources of variation can affect inferences: observation error and process 

noise. Field surveys rarely reveal true abundance, and differences between truth and 

estimates produces observation error, which reduces confidence in trend estimates 

(Staples et al. 2004). Observation error includes measurement error, or differences 

between truth and estimates at sampled locations, and sampling error, or differences 

between sampled locations and the population at large. Process noise resulting from 

demographic and environmental stochasticity can produce short-term declines in 

populations that are actually stable over the long term (Dennis et al. 2006). Because they 

explicitly partition both sources of error, state-space models (SSM) are being used 

increasingly to model population dynamics but are computationally complex, require 

long time series to estimate parameters, and may have lower precision and power to 

detect declines than more conventional approaches (Dennis et al. 2006, Wilson et al. 

2011a). These issues are especially relevant when estimating trends and extinction 

probabilities for rare or at-risk populations where sample sizes and time-series length are 

often limited and where low precision and power complicate detecting patterns that have 

serious consequences. 

 Ferruginous Pygmy-Owls (Glaucidium brasilianum) were once considered common 

in portions of the Sonoran Desert in southern Arizona but were extirpated from much of 
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their historic range due likely to habitat loss (Johnson et al. 2003). Consequently, pygmy-

owls were listed as endangered in Arizona in 1997 but delisted for reasons unrelated to 

recovery in 2006 when less than 10 pairs were known (USFWS 2011). In neighboring 

northwest Mexico, pygmy-owls are more common, found in similar environments where 

riparian woodlands occur near stands of giant saguaro cacti (Carnegiea gigantea), which 

provide nest cavities, and were thought to be declining for unknown reasons (Flesch and 

Steidl 2006). Mexican populations of pygmy-owls are important for recovery in Arizona 

because natural or facilitated dispersal from Mexico can augment populations, especially 

when coupled with habitat restoration, and because information on factors that drive 

population dynamics can guide management. Despite the importance of Mexican 

populations, current data on population trends and factors that drive them are unavailable.  

 I evaluated population trends and population structure of pygmy-owls in northwest 

Mexico by comparing inferences from multivariate state-space models (mSSM), which 

explicitly estimate observation error and process noise, and more conventional mixed-

effects models of observed counts, which assume no process noise. Understanding how 

assumptions regarding these sources of error affect inferences is important for guiding 

monitoring and management in this and a broad range of other systems despite few 

comparisons of techniques (e.g., Wilson et al. 2011a). Moreover, unbiased forecasts of 

extinction risk require explicit estimates of process noise and information on population 

structure because populations with low process noise and high levels of structure (e.g., 

numerous independent subpopulations with asynchronous dynamics) are less vulnerable 

to extinction (Heino et al. 1997, Holmes et al. 2007). Because information on factors that 

explain population dynamics can guide managers and because weather often affects 

population dynamics in arid environments but may be less influential in high-quality 
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habitat, I evaluated hypothesized relationships between population dynamics and 

temporal variation in weather and assessed the effects of spatial variation in vegetation 

and land use. 

METHODS 

I considered a region in northwest Mexico that is within 120 km of Arizona and includes 

both major vegetation communities occupied by pygmy-owls, the Arizona Upland 

subdivision of the Sonoran Desert and semi-desert grassland. Arizona Uplands are 

dominated by woodlands and scrub of short leguminous trees such as mesquite (Prosopis 

velutina) and saguaros. Semi-desert grasslands are dominated by open mesquite 

woodlands, bunchgrasses, and sub-shrubs. Riparian areas in both communities are 

dominated by mesquite woodlands. Annual precipitation in this region is bimodal and 

dominated by a summer monsoon in late June-Sept and winter storms that are most 

intense during the El Niño Southern Oscillation.  

Sampling and survey design 

 I estimated abundance by repeatedly surveying the same locations across time. In 

spring of 2000, I surveyed a random sample of 71 transects. After these initial surveys, I 

selected 18 transects that were occupied by pygmy-owls and surveyed them each spring 

for the next 11 years. Survey effort was focused in 4 regions and totaled 54 km/yr (see 

Flesch and Steidl 2006). I placed transects along drainage channels and elicited responses 

by broadcasting territorial calls at 5-10 stations per transect, which yields nearly perfect 

detection probability of territorial males (see Flesch and Steidl 2007). To minimize 

chances of double counting individuals, which typically move toward broadcasts, I 

increased station spacing after initial detection of each male, used response distance, 

direction, and timing to estimate abundance, and occasionally repeated surveys.   
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 Trend analyses  

 To estimate population trends and population structure, I used mSSM, 

xt = Bxt-1+ u + vt,   vt ~MVN(0,Q)  (1) 

yt = Zxt+ a + wt,   wt ~MVN(0,R)  (2) 

where xt is a vector of loge+1 transformed unknown true abundances in year t, B is an 

autoregressive parameter estimating density dependence, u is a trend parameter, and v is 

process error that has a multivariate normal distribution with mean zero and variance Q 

that measures process variance (Hinrichsen and Holmes 2010). In eq. 2, yt is a vector of 

loge+1 transformed counts of male pygmy-owls on each transect, Z is a n×m design 

matrix identifying time series (n) associated with each state process (m), which models 

population structure, a is a vector of n–1intercept-like parameters, and w is observation 

error that has a multivariate normal distribution with mean zero and variance R that 

measures observation variance. Data enter the model as y’s and x’s are estimated. I 

assumed initial abundance was not at equilibrium and density independence (B=1) 

because estimates of B based on parametric bootstrap likelihood ratio tests (Dennis and 

Taper 1994) and the best mSS model were ≥0.96 (Sabo et al. 2004). I used maximum 

likelihood (ML) methods and the expectation-maximization and Kalman filter algorithms 

implemented by the MARSS library in R to estimate parameters and parametric 

bootstraps to estimate standard errors (R Core Development Team 2013).  

 Univariate and mSSM are similar but mSSM consider multiple time series 

simultaneously and do not require condensing data from each sample into a single 

population-wide estimate for each time step, which allows variation in growth rates and 

process errors among population units in different spatial strata and covariance among 

errors to be estimated. Thus, parameter estimates were based on the full 18 time series by 
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12 year sample. To assess evidence of population structure, I considered three model 

structures: 1) time series for each transect as independent samples from one larger 

population with one growth rate and process error, 2) regional subpopulations (m=4) with 

a common growth rate and equal or varying process errors, and 3) regional 

subpopulations with varying growth rates and equal or varying process errors. Because 

likelihood profiles of parameters in SSM can have multiple local maxima and low 

estimablility, I initiated parameter searches from random sets of starting values and 

evaluated profile likelihoods across a range of parameter values. 

 To compare inferences on trends and population structure between mSSM and a more 

conventional approach that does not partition observation and process error, I fit a similar 

set of linear mixed-effects models (LMEM)  

yit = (β0+ b0i) + β1xit + εit,   εit ~N(0,σ2)  (3) 

where β0 is an intercept for the population, b0i is a vector of random intercepts for each 

transect, β1 is a trend parameter for a fixed time effect, xit indicates the year of each 

observation for the ith transect centered at 0, εit is an error term that has a normal 

distribution with a mean of zero and variance σ2, which measures what is assumed to be 

observation variance, and yit is the observed data as in eq. 2. Whereas mSSM explicitly 

separate observation and process variance, both variances are confounded in LMEM of 

count data and all variance is assumed to be observation error. 

 To assess population structure, I specified additional models analogous to those for 

mSSM. To assess regional variation in intercepts, I replaced b0i in eq. 3 with a vector of 

random intercepts for regions (b0j) and a vector of random intercepts for transects nested 

within regions (b0j(i)). To assess regional variation in trends, I fit a random slope for 

region (b1j). To assess spatial variation in observation error, I fit three additional models 
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that estimated observation variances for each region. To model covariance in observation 

error, I considered first-order autoregressive [AR(1)] and autoregressive-moving-average 

structures; AR(1) was supported in all cases and is reported. I used restricted maximum 

likelihood when assessing models with different random effects, ML methods to estimate 

fixed effects, and fit models with the nlme library in R. To evaluate support among 

models in each set, I used AICc and model averaging where there was support for >1 

model (Burnham and Anderson 2002).  

Environmental drivers 

 Temporal variation in weather could affect owl abundance directly through energetic 

and thermoregulatory constraints or indirectly by affecting prey. Low winter 

temperatures could cause direct mortality of owls or prey, or reduce body condition 

necessary to establish territories. Thus, the winter stress hypothesis predicts that lower 

average minimum temperatures during winter (Nov-Mar) reduce owl abundance the 

following spring. High temperatures during nesting could limit prey activity or reduce 

nestling condition or survival, which could reduce owl productivity and abundance the 

following year. Thus, the nestling stress hypothesis predicts that high average maximum 

temperatures reduce owl abundance one year later. In arid environments, precipitation 

can augment abundance of prey directly and positively during the same year or indirectly 

by augmenting insect or plant resources that are important to prey and create lagged 

effects. Thus, the direct prey enhancement hypothesis predicts owl abundance in year t 

increases with precipitation in year t–1, and the delayed prey enhancement hypothesis 

predicts owl abundance in year t increases with precipitation in year t–2. Because the 

effects of annual vs. seasonal precipitation, and incubation- vs. brooding-season 

temperature could vary, I considered cool-season (Oct-May), warm-season (June-Sept), 
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and annual (Oct-Sept) precipitation when evaluating prey enhancement hypotheses, and 

temperature during incubation (Apr) and brooding (May-June) when evaluating the 

nestling stress hypothesis and used factors that minimized AICc to represent each 

hypotheses. Correlations between weather factors representing hypotheses were low (r = 

-0.41-0.38). All weather data were taken from stations near Sasabe, Arizona, which is 5-

75 km from transects (WRCC 2011).  

 Spatial variation in factors that affect resources important to owls could explain 

variation in population dynamics. To address this question, I quantified vegetation and 

land use around survey stations and averaged measurements within transects (see Flesch 

and Steidl 2006). I quantified amounts of riparian vegetation by measuring the width of 

riparian corridors. To describe vegetation structure, I measured woodland cover, canopy 

height, and vegetation volume in riparian areas, and canopy height and vegetation volume 

in adjacent uplands. I estimated abundance of potential nest sites by measuring the 

proportion of stations where mature saguaros were present, which were the only substrate 

used for nesting. I ranked land-use intensity from 0 to 3 (none, low, moderate, high) in 

five categories (agriculture, woodcutting, exotic-grass planting, livestock grazing, 

housing) and summed ranks across categories. I measured vegetation at the beginning of 

the study because it was largely static and land use each year because it occasionally 

varied. Because some attributes of vegetation structure were correlated, I used principal 

components analysis to generate synthetic variables. A component representing riparian 

vegetation structure was positively correlated with woodland cover (r=0.66), canopy 

height (r=0.52), and vegetation volume >3-m above ground (r≥0.34), whereas a 

component representing upland vegetation structure was positively correlated with 
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canopy height (r=0.65) and vegetation volume ≥1-m above ground (r≥0.90). Correlations 

between most vegetation and land-use factors were low (r = -0.40-0.52).  

 To evaluate the effects of temporal (weather) and spatial (habitat and land use) factors 

on population dynamics, I added fixed covariate terms to eq. 3, used the most 

parsimonious structures for the random effects and σ2, and used AICc to assess support 

among models. When evaluating support among weather hypotheses, I considered each 

hypothesis independently and biologically plausible combinations of hypotheses. To 

evaluate the effects of spatial factors, I developed nine candidate models that represented 

the effects of five potential covariates and considered abundance of potential nest sites in 

all models because safe nests are critical for reproduction. Because inferences were 

similar based on both modeling approaches, all reported effects are from LMEM.   

 Theoretical models of habitat selection predict the highest quality places are selected 

first and used more consistently over time (Fretwell and Lucas 1969). Therefore, 

transects with more persistent populations and thus lower coefficients of variation in 

abundance (CVa) across time should support higher quality habitat independent of local 

carrying capacity. Hence, to identify vegetation and land-use factors associated with 

habitat quality, I regressed spatial factors against CVa.  

RESULTS 

Trends and variances 

Abundance declined across time based on both modeling approaches (Fig. 1). Two top-

ranked mSSM estimated negative growth rates of 2.6-2.8%/yr, a 25.2-26.5% decline over 

12 years. A top-ranked LMEM estimated a declining trend of 1.9%/yr or 19.2% overall 

(Tables 1-2). Despite similar estimates, precision was low for mSSM (SE=3.6%) and 

95% confidence intervals overlapped zero. Abundance was high initially (55 males), 
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declined steadily to 2008 (21 males), then increased. Although dynamics varied 

somewhat regionally (Fig. 1), there was no evidence that trends varied among regions 

(ΔAICc ≥6.6; Table 1). 

 The top-ranked mSSM was for a single population with one growth rate and process 

variance. A model with regional covariance in process variance (r=0.58) had less support 

(ΔAICc =1.49). In contrast, the top-ranked LMEM estimated regional differences in 

observation variance (range=0.082-0.13) but not intercepts (ΔAICc ≥2.12). Residuals 

separated by one year were moderately correlated (r=0.29) and observations from the 

same transects were highly correlated (r=0.71). 

 Estimates of process variance from mSSM (0.015) were much lower than observation 

variance (0.086; Table 2). Profile likelihoods of observation variance suggested it was 

highly estimable but less so for the trend parameter and process variance (Appendix A). 

Estimates of observation variance from LMEM (0.094) were similar to the sum of both 

variances from mSSM.  

Environmental drivers 

 Temporal variation in weather explained owl abundance in the predicted directions 

but support among hypotheses varied. Support for the delayed prey enhancement 

hypothesis with annual precipitation and the nestling stress hypothesis with brooding-

season temperature were highest (Table 3). Temporal variation in abundance closely 

tracked annual precipitation at a lag time of two years (Fig. 2A) and abundance increased 

by an average of 0.42±0.17% (±SE) with each 1-cm increase in precipitation. 

Additionally, temporal variation in abundance closely deviated from average maximum 

temperatures during the brooding season at a lag time of one year (Fig. 2C) and 

abundance decreased by an average of 8.5±2.9% with each 1-ºC increase in temperature. 
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Annual precipitation at a lag time of two years has stronger effects than warm-season 

precipitation at a lag time of one year. There was little support for an effect of cool-

season precipitation (ΔAICc ≥7.14) or for the winter stress hypothesis (Table 3; Fig. 2).  

 Spatial variation in vegetation and land use had large effects on local temporal 

variation in abundance. A top-ranked model included positive effects of abundance of 

potential nest sites and structural complexity and amount of riparian vegetation, and a 

negative effect of land-use intensity, but there was little support for an effect of structural 

complexity of upland vegetation once these factors were considered (Table 3; Fig. 3). 

Most vegetation and land-use factors that explained local variation in abundance were 

associated with CVa in the predicted directions (Fig. 3). Abundance of potential nest sites 

(β1±SE = -2.3±0.7) and structural complexity of riparian vegetation (-0.41±0.12) 

decreased with increasing CVa whereas land-use intensity increased (0.51±0.19). 

DISCUSSION 

Abundance of Ferruginous Pygmy-Owls in the Sonoran Desert of northwest Mexico 

declined by an estimated 1.9%/yr or 19% over 12 years based on linear-mixed effects 

models (LMEM) that assumed no process noise, and by up to 2.8%/yr or 27% overall 

based on multivariate state-space models (mSSM) that explicitly considered process 

noise and observation error. Despite similar trend estimates, precision varied and 

confidence intervals from mSSM were broad and included positive values. Because 

process noise can produce autocorrelated residuals and may suggest short-term declines 

in populations that are actually stable, estimates of decline from SSM tend to be higher 

than those from generalized linear models of observed counts (Wilson et al. 2011b). In 

comparison, by assuming no process noise, generalized linear models of observed counts 

underestimate true uncertainty in trend estimates. Although confidence interval coverage 
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in SSM improves with time-series length (Humbert et al. 2009), estimates of precision 

from mSSM based on longer time series (22-28 years at 6-13 sites) are similar to those 

reported here based on a 12-year time series at 18 sites, suggesting much longer time 

series are required to generate precise trend estimates (Hinrichsen and Holmes 2010, 

Ward et al. 2010). Because detection probability of pygmy-owls is nearly perfect and 

thus measurement error is low (Flesch and Steidl 2007), any effect of observation error 

on uncertainty was due largely to sampling error. Despite uncertainty, the fact that both 

approaches produced similar estimates matches results from the only other comparison of 

similar techniques of which I am aware and increases confidence that populations have 

indeed declined (Wilson et al. 2011a).  

 By explicitly estimating both observation error and process noise, SSM can provide 

more reliable inferences on population trends, especially in noisy systems or situations 

where sampling methods are unstandardized. Nonetheless, when data are too sparse to 

reliably separate process noise from observation error, using SSM at a cost of precision 

may not be a useful tradeoff, especially in situations where sampling effort is high and 

measurement error and process noise are known or suspected to be low a priori. In these 

situations, more conventional approaches such as LMEM of counts may be preferred. 

 Estimates of process noise (0.015) were fairly low, within the range reported for other 

vertebrates, similar to estimates for other non-passerine birds, and higher than for many 

large mammals (Sabo et al. 2004, Holmes et al. 2007, Ward et al. 2010). Although 

precision was also low, given the relatively short time series (Lindley 2003), estimates of 

process noise are critical for assessing extinction probability (Holmes et al. 2007), 

especially for at-risk species such as pygmy-owls for which no prior information existed. 

In contrast, estimates of observation variance (0.086) were higher, more precise, similar 
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to or lower than those for other non-passerine birds, and higher than those for long-lived 

mammals (Lindley 2003, Staples et al. 2004, Ward et al. 2010).  

 Trends did not vary regionally based on either approach but other inferences 

regarding population structure differed. When no process noise was assumed, estimates 

of observation error varied regionally suggesting higher levels of population structure 

than indicated by mSSM. When observation error and process noise were partitioned, 

however, process noise did not vary regionally but year-to-year deviations in population 

growth were moderately correlated among regions suggesting somewhat synchronous 

dynamics across space. mSSM are useful for evaluating population structure (Ward et al. 

2010) but determining what drives this structure is more complex. Synchronized 

dynamics can be driven by dispersal, climate forcing, and spatial autocorrelation in 

important environmental factors (Ranta et al. 1995). Although regions I considered were 

roughly equidistant, one region with the most disparate dynamics was isolated by 

mountains that can limit dispersal (Flesch et al. 2010). Climate forcing combined with 

local variation in weather could drive synchrony at levels observed here, especially given 

marked weather effects. Moderate levels of synchrony have important implications for 

persistence because highly synchronized populations face greater extinction risks (Heino 

et al. 1997).   

 Weather was associated with marked changes in abundance, and important factors 

and lag times identified were consistent with the ecology of this system and arid systems 

in general. Precipitation had large effects on owl abundance and annual precipitation at a 

lag time of two years had larger effects than warm-season precipitation at a lag time of 

one year. In arid environments, precipitation drives rapid increases in plant biomass, seed 

production, and insect abundance, and these resource pulses directly bolster food 
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availability for small vertebrates, which increases their productivity and abundance 6-12 

months later (Jaksic 2001, Lima et al. 2002, 2008). Consequently, predator populations 

are often separated from the direct effects of precipitation and exhibit numerical 

responses two years later (Jaksic et al. 1992, Dennis and Otten 2000, Lima et al. 2002, 

Letnic et al. 2005, this study). In the Sonoran Desert, pygmy-owls are generalists that 

primarily consume lizards and secondarily large arthropods (Flesch, unpubl. data), which 

explains why precipitation had stronger effects at lag times of two vs. one year. Wide-

ranging effects of precipitation on the dynamics of small vertebrate and predator 

populations have been observed on at least three continents (Holmgren et al. 2006) with 

this study providing a rare example from the Sonoran Desert (Rosen 2000). Because 

weather factors and lag times identified here are consistent with the ecology of this 

system and similar systems worldwide, these patterns suggest weather-mediated trophic 

interactions and the ongoing drought drove observed declines.   

 In contrast with other arid systems (Holmgren et al. 2006), winter precipitation driven 

by the El Niño Southern Oscillation (ENSO) may not be the principal driver of bottom-up 

dynamics in this system, even though ENSO events in early years had large effects on 

precipitation. In the Sonoran Desert, summer rather than winter precipitation drives 

increases in lizard abundance (Rosen 2000) and causes marked late-summer pulses in 

primary productivity when young pygmy-owls are recruiting into the adult population.  

 Weather can have indirect effects on populations by affecting resources or direct 

physiological effects (Stenseth et al. 2002). Owl abundance decreased as average 

maximum temperatures during the brooding season increased at a lag time of one year, 

which suggests both direct and indirect processes operate in this system. Heat stress can 

directly affect the behavior and physiology of desert birds (Wolf 2000) and its potential 
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effect on small owls is plausible given they have lower thermal tolerances than other 

desert birds (Ligon 1969). The role of direct effects is suggested by the fact that use of 

hotter west-facing nest cavities in this system declines from cool to hot regions, and that 

nest success increases in cavities with cooler microclimates (Flesch and Steidl 2010). 

Alternatively, indirect effects are also plausible because temperatures >20-30ºC reduce 

activity levels of lizard species that are commonly depredated by pygmy-owls (Flesch, 

unpubl. data). Regardless of the mechanism, negative effects of high temperatures has 

disturbing implications given predictions for increasing temperatures associated with 

climate change.   

 Spatial variation in vegetation and land use may have affected population dynamics in 

important ways. Abundance was higher on average in areas with higher abundance of 

potential nest cavities, greater structural complexity and quantity of riparian vegetation, 

and lower intensity of grazing and other land uses. Moreover, abundance also varied less 

across time with many of these same factors, suggesting they are important drivers of 

habitat quality. Higher abundance of potential nest cavities can enhance habitat quality by 

reducing predator efficiency (Martin 1993) and by providing more optimal nest cavities 

that mitigate predation risk and thermal stress (Flesch and Steidl 2010). Larger quantities 

and greater structural complexity of riparian vegetation also enhances reproductive 

performance of pygmy-owls (Flesch and Steidl 2010) whereas higher grazing intensity 

and other land uses can degrade resources (Fleischner 1994). Thus, while bottom-up 

effects of weather may have driven declines, high-quality habitat can promote local 

persistence. Although studies of population dynamics often focus on deterministic 

changes in abundance over large areas, spatial variation in local resources can explain 

variation in dynamics that is often assumed to be noise.  
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 Conserving populations of pygmy-owls in Arizona has been a major focus of 

managers since they were first listed as endangered. If declines in abundance described 

here continue, recovery strategies that depend on dispersal from Mexico will be less 

effective and persistence of pygmy-owls in the Sonoran Desert could be jeopardized. 

Although active recovery strategies such as facilitated dispersal from Mexico have been 

considered, these efforts should not remove individuals from populations that are 

declining. Quantitative trend estimates for pygmy-owls in Arizona are unavailable, but 

historic information and recent surveys suggest widespread loses of riparian woodlands 

drove major contractions in distribution over the last century (Johnson et al. 2003, 

USFWS 2011). Thus, declines I described in adjacent Mexico are notable because they 

were not accompanied by any obvious changes in vegetation or land use.  

 Understanding factors that drive population dynamics at local scales can help guide 

conservation efforts. In this system, abundance was higher and varied less over time in 

areas with more nest cavities and riparian vegetation, and less intensive land use. Thus, 

management focused on these factors should enhance recovery prospects. For example, 

augmenting nest cavities (e.g., nest boxes or saguaro translocation) and restoring 

mesquite woodlands in riparian areas, which have been lost or degraded across vast 

portions of southern Arizona and northwest Mexico, should simultaneously enhance 

habitat quality and habitat area. Despite these recommendations, predictions for 

increasing temperature and decreasing precipitation due to climate change (Seager et al. 

2007) could make habitat management less effective. Although some local factors 

seemed to promote habitat quality, the relative effects of habitat vs. weather are unknown 

because they were each measured at different scales. Understanding the extent to which 
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high-quality habitat can buffer the effects of harsh weather is important in this and many 

other systems in the wake of anticipated climate change.   

ACKNOWLEDGEMENTS 

I thank the U.S. National Park Service, Desert Southwest Cooperative Ecosystem Studies 

Unit, Tucson Audubon Society, Arizona Department of Transportation, U.S. Fish and 

Wildlife Service, T&E Inc., Defenders of Wildlife, Center for Biological Diversity, 

Arizona Zoological Society, Global Owl Project, and Sierra Club for support. I thank S. 

Jacobs for field assistance, A. Swanson for programming, and R. Steidl for suggestions. 

E. Crone, M. Hebblewhite, B. Hossack, R. Hutto, W. Lowe, P. Lukacs, and J. Maron 

provided helpful reviews. This effort is dedicated to the memory of Tom Wootten.   

LITERATURE CITED 

Bjørnstad, O.N., and B.T. Grenfell. 2001. Noisy clockwork: time series analysis of 

population fluctuations in animals. Science 293:638-643. 

Burnham, K.P., and D.R. Anderson.  2002.  Model selection and multimodel inference: a 

practical information-theoretic approach. Springer-Verlag, New York. 

Dennis, B, and M.R.M. Otten. 2000. Joint effects of density dependence and rainfall on 

abundance of San Joaquin kit fox. Journal of Wildlife Management 64:388-400. 

Dennis, B., and M.L. Taper. 1994. Density-dependence in time-series observations of 

natural-populations - estimation and testing. Ecological Monographs 64:205-224. 

Dennis, B., J.M. Ponciano, S.R. Lele, M.L. Taper, and D.F. Staples. 2006. Estimating 

density dependence, process noise, and observation error. Ecological Monographs 

76:323-341. 

Fleischner, T.L. 1994. Ecological costs of livestock grazing in western North America. 

Conservation Biology 8:629-644. 



 

20 
 

Flesch, A.D., C.W. Epps, J.W. Cain, M. Clark, P.R. Krausman, and J.R. Morgart. 2010. 

Potential effects of the United States-Mexico border fence on wildlife. Conservation 

Biology 24:171-181. 

Flesch, A.D., and R.J. Steidl. 2006. Population trends and implications for monitoring 

cactus ferruginous pygmy-owls in northern Mexico.  Journal of Wildlife Management 

70:867-871. 

Flesch, A.D., and R.J. Steidl. 2007. Detectability and response rates of ferruginous 

pygmy-owls.  Journal of Wildlife Management 71: 981-990. 

Flesch, A.D., and R.J. Steidl. 2010. Importance of environmental and spatial gradients on 

patterns and consequences of resource selection. Ecological Applications 20:1021-

1039. 

Franklin, A.B., D.R. Anderson, R.J. Gutierrez, and K.P. Burnham. 2000. Climate, habitat 

quality, and fitness in Northern Spotted Owl populations in northwestern California. 

Ecological Monographs 70:539-590. 

Fretwell, S.D., and H.L. Lucas. 1969. On territorial behavior and other factors 

influencing habitat distribution in bird. I. Acta Biotheoretica 14:16-36. 

Heino, M., V. Kaitala, E. Ranta, and J. Lindstrom. 1997. Synchronous dynamics and 

rates of extinction in spatially structured populations. Proceedings of the Royal 

Society of London Series B-Biological Sciences 264:481-486. 

Hinrichsen, R.A., and E.E. Holmes. 2010. Using multivariate state-space models to study 

spatial structure and dynamics. Pages 145-166 in R.S. Cantrell, C. Cosner, and S. 

Ruan, editors. Spatial Ecology. CRC/Chapman and Hall, Boca Raton, Florida. 

Holmes, E.E., J.L. Sabo, S.V. Viscido, and W.F. Fagan. 2007. A statistical approach to 

quasi-extinction forecasting. Ecology Letters 10:1182-1198. 



 

21 
 

Holmgren, M., P. Stapp, C.R. Dickman, C. Gracia, S. Graham, J.R. Gutierrez, C. Hice, F. 

Jaksic, D.A. Kelt, M. Letnic, M. Lima, B.C. Lopez, P.L. Meserve, W.B. Milstead, 

G.A. Polis, M. A. Previtali, R. Michael, S. Sabate, and F.A. Squeo. 2006. Extreme 

climatic events shape arid and semiarid ecosystems. Frontiers in Ecology and the 

Environment 4:87-95. 

Humbert, J.Y., L. Mills, J.S. Horne, and B. Dennis. 2009. A better way to estimate 

population trends. Oikos 118:1940-1946. 

Jaksic, F.M. 2001. Ecological effects of El Niño in terrestrial ecosystems of western 

South America. Ecography 24:241-250. 

Jaksic, F.M., J.E. Jimenez, S.A. Castro, and P. Feinsinger. 1992. Numerical and 

functional-response of predators to a long-term decline in mammalian prey at a 

semiarid Neotropical site. Oecologia 89:90-101. 

Johnson, R.R., J.L.E. Cartron, L.T. Haight, R.B. Duncan, and K.J. Kingsley. 2003. 

Cactus ferruginous pygmy-owl in Arizona, 1872-1971. Southwestern Naturalist 

48:389-401. 

Letnic, M., B. Tamayo, and C.R. Dickman. 2005. The responses of mammals to La Niña-

associated rainfall, predation, and wildfire in central Australia. Journal of 

Mammalogy 86:689-703. 

Ligon, J.D. 1969. Some aspects of temperature relations in small owls. Auk 86:458-472. 

Lima, M., N.C. Stenseth, and F.M. Jaksic. 2002. Food web structure and climate effects 

on the dynamics of small mammals and owls in semi-arid Chile. Ecology Letters 

5:273-284. 



 

22 
 

Lima, M., S. Ernest, J.H. Brown, A. Belgrano, and N.C. Stenseth. 2008. Chihuahuan 

Desert kangaroo rats: nonlinear effects of population dynamics, competition, and 

rainfall. Ecology 89:2594-2603. 

Lindley, S.T. 2003. Estimation of population growth and extinction parameters from 

noisy data. Ecological Applications 13:806-813. 

Martin, T.E. 1993. Nest predation and nest sites - new perspectives on old patterns. 

Bioscience 43:523-532. 

Ozgul, A., M.K. Oli, L.E. Olson, D.T. Blumstein, and K.B. Armitage. 2007. 

Spatiotemporal variation in reproductive parameters of yellow-bellied marmots. 

Oecologia154:95-106. 

Pelletier, F., K. Moyes, T.H. Clutton-Brock, and T. Coulson. 2012. Decomposing 

variation in population growth into contributions from environment and phenotypes 

in an age-structured population. Proceedings of the Royal Society B-Biological 

Sciences 279:394-401. 

R Development Core Team. 2013. R: a language and environment for statistical 

computing. Version 2.15.3. R Foundation for Statistical Computing, Vienna, Austria. 

Ranta, E., V. Kaitala, J. Lindstrom, and H. Linden. 1995. Synchrony in Population-

Dynamics. Proceedings of the Royal Society of London Series B-Biological Sciences 

262:113-118. 

Reid, J.M., E.M. Bignal, S. Bignal, D.I. McCracken, and P. Monaghan. 2006. Spatial 

variation in demography and population growth rate: the importance of natal location. 

Journal of Animal Ecology 75:1201-1211. 



 

23 
 

Rosen, P.C. 2000. A monitoring study of vertebrate community ecology in the northern 

Sonoran Desert. Dissertation, Department of Ecology and Evolutionary Biology, 

University of Arizona, Tucson, Arizona. 

Sabo, J.L., E.E. Holmes, and P. Kareiva. 2004. Efficacy of simple viability models in 

ecological risk assessment: does density dependence matter? Ecology 85:328-341. 

Seager, R., et al. 2007. Model projections of an imminent transition to a more arid 

climate in southwestern North America. Science 316:1181-1184. 

Staples, D.F., M.L. Taper, and B. Dennis. 2004. Estimating population trend and process 

variation for PVA in the presence of sampling error. Ecology 85:923-929. 

Stenseth, N.C., A. Mysterud, G. Ottersen, J.W. Hurrell, K.S. Chan, and M. Lima. 2002. 

Ecological effects of climate fluctuations. Science 297:1292–1296. 

Turchin, P. 1995. Population regulation: old arguments and a new synthesis. Pages 19-40 

in Cappuccino, N. and P.W. Price, editors. Population dynamics: new approaches and 

synthesis. Academic Press, New York. 

Turchin, P. 2003. Complex population dynamics. Princeton University Press, Princeton, 

New Jersey. 

USFWS. 2011. 12-Month finding on a petition to list the Cactus Ferruginous Pygmy-Owl 

as threatened or endangered with critical habitat; proposed rule, October 5, 2011. 

Federal Register 76:61856–61894. 

Ward, E.J., H. Chirakkal, M. González-Suárez, D. Aurioles-Gamboa, E.E Holmes, and L. 

Gerber. 2010. Inferring spatial structure from time-series data: using multivariate 

state-space models to detect metapopulation structure of California sea lions in the 

Gulf of California, Mexico. Journal of Applied Ecology 47:47-56. 



 

24 
 

Wilson, H.B., B.E. Kendall, R.A. Fuller, D.A. Milton, and H.P. Possingham. 2011a. 

Analyzing variability and the rate of decline of migratory shorebirds in Moreton Bay, 

Australia. Conservation Biology 25:758-766. 

Wilson, H.B., B.E. Kendall, and H.P. Possingham. 2011b. Variability in population 

abundance and the classification of extinction risk. Conservation Biology 25:747-757. 

Wolf, B. 2000. Global warming and avian occupancy of hot deserts: a physiological and 

behavioral perspective. Revista Chilena de Historia Natural 73:395-400. 

WRCC. 2011. Western U.S. historical summaries for individual stations. 

http://www.wrcc.dri.edu. 

SUPPLEMENTAL MATERIAL 

Appendix A 

A figure illustrating profile log-likelihoods of parameter estimates from the top-ranked 

multivariate state-space model. 

Appendix B 

A figure illustrating variation in temperature and precipitation between 1960 and 2011 in 

the study region.
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Table 1:  Rankings and descriptions of models of population dynamics and population structure of Ferruginous 

Pygmy-Owls in northwest Mexico, 2000-2011. Multivariate state-space models (mSSM) estimated population 

growth rate (u), observation variance (Q), and process variance (Q), and linear mixed-effects models (LMEM) 

estimated trend (β1), observation variance (σ2), and random intercepts for each region (b0j) in time-series 

abundance data. 

Model 
      Description K ΔAICc wi 

mSSM    

   One population, equal u, equal Q   21 0.00 0.67 

   Regional subpopulations, equal u, equal Q 22 1.49 0.32 

   Regional subpopulations, equal u, varying Q  30 8.48 0.01 

   Regional subpopulations, varying u, equal Q  25 8.92 0.01 

   Regional subpopulations, varying u, varying Q  33 16.44 0.00 

LMEM    

   Regional subpopulations, equal β1, varying σ2, same b0j 8 0.00 0.72 

   Regional subpopulations, equal β1, varying σ2, varying b0j 9 2.18 0.24 

   Regional subpopulations, varying β1, varying σ2, varying b0j 11 6.60 0.03 

   One population, equal β1, equal σ2, same b0j 5 8.69 0.01 

   Regional subpopulations, equal β1, equal σ2, varying b0j 6 10.81 0.00 

   Regional subpopulations, varying β1, equal σ2, varying b0j 8 15.10 0.00 
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Table 2:  Parameter estimates from top-ranked models of population dynamics and population structure of Ferruginous Pygmy-Owls in northwest Mexico, 2000-

2011. Multivariate state-space models (mSSM) estimated population growth rate (u), observation variance (R), process variance (Q), and linear mixed-effects 

models (LMEM) estimated trends (β1), observation variance (σ2), and random intercepts for each region (b0j) in time-series abundance data. 

Model u / β1 
 

R 
 

Q 

   Description Estimate SE   Estimate SE   Estimate SE 

mSSM 
        

   One population, equal u, equal Q  -0.026 0.036 
 

0.091 0.0091 
 

0.013 0.0093 

   Regional subpopulations, equal u, equal Q  -0.028 0.036 
 

0.082 0.0089 
 

0.019 0.010 

   Model averaged estimates, unconditional SE -0.026 0.036 
 

0.086 0.0099 
 

0.015 0.0097 

LMEM 
        

   Regional subpopulations, equal β1, varying σ2, same b0j -0.019 0.0079   0.094 0.021       
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Table 3:  Model rankings and parameter estimates for the effects of weather and habitat factors on abundance (log + 1) of Ferruginous Pygmy-Owls along 18 

transects in northwest Mexico, 2000-2011. Parameter estimates are on a percent scale and based on linear mixed-effects models with residual variances estimated 

for each region. Hypothesized precipitation (P, cm) and temperature (T, ºC) effects consider lag times of one (t-1) and two (t-2) years, and annual (Oct-Sept), 

brooding-season (May-June), warm-season (June-Sept), and winter (Nov-March) periods. Habitat factors include cavity abundance (%), riparian vegetation 

structure (principal component correlated with vegetation height, volume, and woodland cover), width of riparian vegetation zone (log m), upland vegetation 

structure (principal component correlated with vegetation height and volume), and land-use intensity (sum of ranks; 0-none, 1-low, 2-mod., 3-high). Parameter 

estimates and standard errors are in parentheses. 

Model and Estimates K AICc ΔAICc wi 

Weather Hypotheses  {Factor (β1 ± SE)} 
    

Nestling Stress + Indirect Prey Enhancement  {T-avg. max. brooding t-1 (-8.5 ± 2.9), P-annual t-2 (0.42 ± 0.17)} 10 175.95 0.00 0.73 

Nestling Stress  {T-avg. max. brooding t-1 (-11.2 ± 2.8)} 9 179.78 3.83 0.11 

Nestling Stress + Direct Prey Enhancement {T-avg. max. brooding t-1 (-9.5 ± 3.0), P-warm season t-1 (0.51 ± 0.39)} 10 180.28 4.33 0.08 

Indirect Prey Enhancement  {P-annual t-2 (0.59 ± 0.16)} 9 181.72 5.77 0.04 

Nestling Stress + Winter Stress  {T-avg. max. brooding t-1 (-11.2 ± 2.8), T-avg. min. winter (0.23 ± 2.7)} 10  181.97 6.02 0.04 

Direct prey enhancement  {P-warm season t-1 (1.0 ± 0.36)} 9 187.24 11.29 0.00 

Null  {time, intercepts, σ2
j} 8 192.47 16.52 0.00 

Winter stress  {T-avg. min. winter (0.56 ± 2.8)} 9 194.62 18.67 0.00 

Habitat Models and Factors (β1 ± SE) 
    

Cavities (1.3 ± 0.3) + Rip. veg. structure (19.2 ± 5.8) + Rip. width (26.8 ± 7.7) + Land use (-18.0 ± 8.6) 14 158.50 0.00 0.40 

Cavities (1.4 ± 0.3) + Rip. veg. structure (22.8 ± 6.6) + Rip. width (25.9 ± 7.6) + Land use (-15.5 ± 8.7) + Up. veg. structure (-4.6 ± 4.4) 15 159.72 1.22 0.22 
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Cavities (1.4 ± 0.3) + Rip. veg. structure (22.6 ± 6.2) + Rip. width (22.4 ± 8.3) 13 160.26 1.76 0.17 

Cavities (1.5 ± 0.3) + Rip. veg. structure (27.1 ± 6.7) + Rip. width (22.0 ± 7.8) + Up. veg. structure (-6.7 ± 4.6) 14 160.48 1.98 0.15 

Cavities (1.4 ± 0.4) + Rip. veg. structure (17.2 ± 7.0)  12 164.18 5.68 0.02 

Cavities (1.5 ± 0.4) + Rip. veg. structure (22.1 ± 7.7) + Up. veg. structure (-7.1 ± 5.5) 13 164.85 6.35 0.02 

Cavities (1.4 ± 0.4) + Rip. veg. structure (14.8 ± 7.3) + Land use (-10.1 ± 10.7) 13 165.54 7.05 0.01 

Cavities (1.6 ± 0.4) 11 167.36 8.86 0.00 

Cavities (1.6 ± 0.5) + Up. veg. structure (0.83 ± 5.8) 12 169.58 11.08 0.00 

Null {time, weather, intercepts, σ2
j} 10 175.95 17.45 0.00 
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Fig. 1. Temporal variation and trends in abundance of Ferruginous Pygmy-Owls in northwest 

Mexico, 2000-2011. Top figure shows standardized annual estimates of abundance based on the 

observed data (open points), fitted values from a top-ranked linear mixed-effect model (LMEM; 

gray points-dashed line), and smoothed state estimates from a top-ranked multivariate state-space 

model (mSSM black points-solid line). Inset figure shows trends based on each modeling 

approach. Bottom figure shows temporal variation in abundance in each of four regions based on 

estimates from a multivariate state-space that considered spatial population structure.  

 

Fig. 2.  Associations between weather and abundance of Ferruginous Pygmy-Owls in northwest 

Mexico, 2000-2011. Left panel shows how annual estimates of total abundance tracked different 

weather factors across time on a standardized scale. Right panel shows associations between total 

annual estimates of abundance and the weather factor depicted in the adjacent figure on the left 

panel on the observed scale. Lines are based on linear models.  

 

Fig. 3.  Associations between habitat factors and abundance of Ferruginous Pygmy-Owls along 

18 transects in northwest Mexico, 2000-2011. Top figures show average predicted abundances 

for each transect from a linear mixed-effect model that included the effects of all five habitat 

factors, two weather factors included in the top-ranked model described in Table 3, and a linear 

time effect. Bottom figures show coefficients of variation in abundance for each transect across 

time versus the same five habitat factors. Riparian vegetation structure was quantified based on a 

principal component that was positively correlated with vegetation height, vegetation volume, 

and woodland cover in riparian areas and upland vegetation structure was quantified based on a 

principal component that was positively correlated with vegetation height and vegetation volume 

in upland areas. Lines are based on linear models. 
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APPENDIX A 

FIG. A1.  Profile log-likelihoods (ll) of parameter estimates for population growth rate (U), 

observation error (R), and process error (Q) based on a top-ranked multivariate state-space model 

of population dynamics of Ferruginous Pygmy-Owls in northern Sonora, Mexico, 2000 and 2011. 
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APPENDIX B 

FIG. B1. Variation in mean maximum temperature during May and June and in annual and warm-

season precipitation at Sasabe, Arizona 1960-2011, which is immediately adjacent to the study 

area in Sonora. Occasional missing values are from a weather station located 15 km north 

(WRCC 2011). Horizontal lines are averages. During the study period, temperature was typically 

much hotter and precipitation was often lower than long-term averages.  
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 Abstract. Understanding processes that drive habitat quality is essential for explaining 

variation in individual performance and for developing effective conservation strategies. 

Spatial variation in resources is a fundamental driver of habitat quality but the realized 

value of resources at any point in space may depend on the effects of conspecifics and 

stochastic factors such as weather that also vary through time. We evaluated the relative 

and combined effects of habitat resources, weather, and conspecifics on habitat quality 

for Ferruginous Pygmy-Owls (Glaucidium brasilianum) in the Sonoran Desert of 

northwest Mexico by monitoring reproductive output over 10 years in 107 territory 

patches. Reproductive output varied much more across space than time and although 

habitat resources had greater effects than weather or conspecifics, evidence for 

interactions among factors associated with each of these components of the environment 

was strong. Relative to habitats that were persistently low in quality, high-quality habitat 

buffered the negative effects of conspecifics and amplified the benefits of favorable 

weather, but did not buffer the disadvantages of harsh weather. The positive effects of 

favorable weather at low conspecific densities were offset by intraspecific competition at 

high densities. Although realized habitat quality declined with increasing conspecific 

density suggesting interference mechanisms associated with an Ideal Free Distribution, 

broad spatial heterogeneity in habitat quality persisted. Factors associated with food and 

foraging space had positive effects on reproductive output but only when nest cavities 

were sufficiently abundant to mitigate predation and other risks. Annual precipitation and 

brooding-season temperature had strong multiplicative effects on reproductive output, 

which declined at increasing rates as drought and temperature increased, reflecting 

conditions that may become more frequent with climate change. Because the collective 

environment influences habitat quality in complex ways, integrative approaches that 
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consider resources, weather, and conspecifics are necessary to accurately assess habitat 

quality. 

 Key words: density dependence, environmental stochasticity, Ferruginous Pygmy-

Owl, habitat quality, ideal despotic distribution, NDVI, Sonoran Desert, weather. 

 INTRODUCTION 

 A major goal in ecology is to understand how environmental variation affects the 

performance of individuals. Environmental factors that vary in both space and time drive 

habitat quality by affecting the fitness realized by occupants in a given habitat. Whereas 

fitness is often defined by an individual’s contribution to population growth (DeJong 

1994, McGraw and Caswell 1996, Coulson et al. 2006), habitat quality or habitat fitness 

potential (sensu Wiens 1989) is defined by the relative contribution of individuals in a 

specific habitat to population growth over periods that exceed the generation time of the 

focal species (Van Horne 1983, Franklin et al. 2000, Johnson 2007). Ultimately, habitat 

quality should drive settlement choices by individuals because those choices have 

important demographic consequences and are under natural selection (Jaenike and Holt 

1991). Understanding factors that influence habitat quality can elucidate important 

selective pressures and help guide conservation and management.  

 Environmental factors that drive habitat quality can be organized into a spatial and 

temporal component and a component related to the endogenous effects of conspecifics. 

Spatial factors are those that vary across space at any given point in time and often vary 

in predictable ways from the perspective of a focal organism. Temporal factors in 

contrast, vary with time at any given point in space often in unpredictable ways. Presence 

and abundance of conspecifics varies both spatially and temporally but are considered 

separately because they affect the realized value of resources that may otherwise be of 
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high fundamental quality. Although factors associated with each component vary to some 

extent in both space and time, a framework that considers these components can provide 

a useful context for assessing the environmental drivers of habitat quality.  

 Factors associated with the spatial component of habitat quality are often referred to 

collectively as habitat, which is a set of resources and conditions that foster occupancy 

and persistence of individuals of a given species through time (Morrison et al. 1992). 

This definition of habitat is conceptually similar to that of the niche (Holt et al. 2009) but 

represents an actual projection or mapping of the niche in space. While some definitions 

of habitat consider environments of similar structure and physiognomy to be the same 

habitat (Hutto 1985), our definition recognizes that different places even within similar 

environments (e.g., places traditionally considered a habitat type) can drive differences in 

performance due to variation in resources they provide. Regardless of specific resources 

that comprise habitat, their functional roles in providing food and reducing vulnerability 

to physiological stress and negative heterospecific interactions are fundamental (Newton 

1998). Many studies have sought to identify factors that affect habitat quality, but until 

recently researchers have relied on indirect measures of habitat quality such as body 

condition, settlement patterns, or density rather than direct measures of vital rates 

(Johnson 2007, Gaillard et al. 2010). In systems where vital rates have been monitored 

over time, spatial variation in vegetation, landscape structure, and abiotic factors can 

have large and consistent effects on performance that persist longer than the generation 

time of the focal species (Blancher and Robertson 1985, Newton 1989, 1991, Dhondt et 

al. 1992, Franklin et al. 2000, McLoughlin et al. 2007). Thus, in some systems, good 

places tend to remain good for long periods.  
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 Factors associated with the temporal component of habitat quality are related largely 

to stochastic fluctuations in environmental conditions that affect vital rates and thus 

population dynamics (Shaffer 1987, Tuljapurkar 1990, Doak et al. 2005). Temporal 

variation in weather for example, can have large effects on vital rates through either 

direct (physiological) or indirect (food web) pathways despite unpredictable timing 

(Rotenberry and Wiens 1991, Stenseth et al. 2002, Sæther et al. 2004, Mysterud et al. 

2008). Although spatial factors such as vegetation structure are likely the primary cues 

used by animals to choose high-quality habitats (Hutto 1985), future conditions normally 

associated with those cues may not be realized due to unpredictable weather. Thus, 

realized habitat quality at a given point in time may be poor even at points in space that 

tend to be good on average over time. If temporal variation is high, good places may 

change through time and temporal factors may explain high levels of variation in 

performance, which can create moving targets for managers endeavoring to identify and 

preserve high-quality habitats. Moreover, weather can affect realized habitat quality in an 

additive or interactive manner. If weather effects are additive, they will be uniform across 

space and habitat may not attain its full potential until conditions are favorable. If 

weather effects are interactive, some resources may be able to buffer the negative effects 

of harsh weather or even amplify the benefits of favorable weather (Van Horne et al. 

1997, Franklin et al. 2000), which has important implications for management in the face 

of climate change.   

 An important component of the environment that varies in both space and time and 

that can have marked effects on individual performance is the presence and abundance of 

conspecifics occupying a focal area (Svärdson 1949, MacArthur 1972). Individuals in 

habitats of high fundamental quality (e.g., basic suitability sensu Fretwell 1972, zero-
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density suitability sensu Bernstein et al. 1991, or intrinsic habitat value sensu 

McLoughlin et al. 2007), for example, may not realize the potential of those habitats due 

to intraspecific competition (Fretwell and Lucas 1969). At one extreme, under the Ideal 

Free Distribution (IFD), intraspecific competition equalizes realized habitat quality 

among individuals despite differences in the fundamental qualities of the habitat they 

occupy (Fretwell and Lucas 1969). Mounting antagonistic interactions and reductions in 

territory size are likely mechanisms for these patterns (Stamps 1990, Both and Visser 

2000, Sillett et al. 2004). At the opposite extreme under the Ideal Dominance Distribution 

(IDD), individual competitive abilities vary, dominants relegate subordinates to habitat of 

lower quality, and thereby realize higher performance regardless of conspecifics (Brown 

1969, Fretwell and Lucas 1969). Although often viewed as alternatives, processes that 

drive each distribution may operate simultaneously on the same or different vital rates 

(Both 1998, Nevoux et al. 2011) just as they often do on feeding rates (Parker and 

Sutherland 1986) and create a broader continuum of potential responses to conspecifics 

(López-Sepulcre et al. 2010). Moreover, although realized habitat quality may or may not 

decline with conspecific density, magnitudes of density dependence could depend on 

fundamental habitat quality (Morris 1987, McLoughlin et al. 2006). Thus, in systems that 

conform strictly to the IDD, spatial variation in resources alone will explain habitat 

quality whereas in systems with properties of both distributions, realized habitat quality 

will vary spatially and decline with conspecific density either uniformly in all habitat 

types or at rates that vary with fundamental habitat quality.  

 When the combined effects of each component are integrated, other potential 

explanations of habitat quality emerge. Although weather is often thought to act 

independent of conspecific density these effects may interact (Anderwartha and Birch 
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1954). Harsh winters for example, often have greater effects on performance when 

densities are high (Gaillard et al. 2000, Bonenfant et al. 2009) and the benefits of 

favorable weather could be offset by high competition. Finally, the combined effects of 

weather and conspecifics will be more complex if they also depend on habitat attributes.  

 Although the effects of factors associated with each component of habitat quality have 

been well-studied individually, few studies have assessed their integrated effects in wild 

animal populations. As a result, our understanding of how the collective environment 

influences habitat quality is incomplete, especially across continuous variation in 

important resources that drive fundamental habitat quality. The most problematic aspects 

with existing studies include the following: (1) they rarely consider how variation in 

resources and conspecific densities affect vital rates at individual vs. population scales 

(Sinclair 1989, Newton 1998), (2) they often treat habitats as discrete entities (Fretwell 

1972, Morris 2003) that may not even exist in the eyes of the focal organisms, and (3) 

they consider time periods that are too short to capture sufficient variation in factors that 

vary across time. With respect to the latter issue, inferences on the effects of habitat 

resources could be misleading if they fail to consider the broader temporal context, which 

may include large effects of weather (e.g., crunches vs. bonanzas) and conspecifics (Van 

Horne et al. 1997, Morris 2011). With respect to the second issue, treating habitats as 

discrete entities is useful for developing elegant theory, but fails to incorporate the fact 

that habitats are intricate combinations of multiple resources that vary continuously in 

space and time (Southwood 1977, Newton 1998) and that variation in important 

resources at microhabitat or among-territory scales may be more important than that at 

larger macrohabitat scales (e.g., woodland vs. shrubland).  
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 In addition to environmental components, intrinsic factors related to an individual’s 

ability to cope with the environment can also affect performance. Age and experience, for 

example, can affect performance independent of resources (Sæther 1990, Newton 1991) 

and maternal effects due to genetics or the environment can affect individual quality and 

performance (Rossiter 1996, McLoughlin et al. 2008). Thus, habitat fitness potential may 

be driven by a combination of intrinsic and environmental factors, which could interact, 

or the fitness potential of an individual may be realized only when an optimal habitat is 

occupied. Nonetheless, individual effects are often found to be small relative to 

environmental ones (Alatalo et al. 1986, Franklin et al. 2000, Pärt 2001, Ferrer and 

Bisson 2003) and to dissipate over time (Sergio et al. 2009). Moreover, because the best 

individuals often have access to the best resources, intrinsic factors tend to be highly 

correlated with external factors that affect performance (Sherry and Holmes 1989, 

Holmes et al. 1996, Petit and Petit 1996, Sergio et al. 2007). Thus, while we acknowledge 

intrinsic differences among individuals exist, they are not considered further because our 

goal is to understand how the relative quality of different points in space varies across 

time for the average individual. 

 We assessed the effects of habitat resources, weather, and conspecifics on habitat 

quality of a Neotropical owl based on 10 years of monitoring across broad gradients in 

these factors. First, we assessed the extent to which performance varied across space and 

time. Second, we identified specific factors that explained habitat quality by evaluating 

hypothesized relationships between performance and factors associated with each 

component. Third, we assessed the relative importance of each component by estimating 

the quantity of variation in performance they explained. Finally, we assessed the 
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combined effects of all three components by evaluating evidence for potential additive 

and interactive relationships among components. 

 STUDY SYSTEM 

 We studied Ferruginous Pygmy-Owls (Glaucidium brasilianum) in the Sonoran Desert 

of northwest Mexico immediately south of Arizona, U.S.A. (Fig. 1). Pygmy-owls are 

residents across much of the lowland Neotropics north to Arizona. Although once 

considered common in portions of southern Arizona, pygmy-owls were extirpated from 

much of their historic range likely due to habitat loss (Johnson et al. 2003). 

Consequently, they were listed as endangered in Arizona in 1997 but delisted for reasons 

unrelated to recovery in 2006; currently, the Arizona population is extremely small 

(USFWS 2011). In neighboring northwest Mexico, pygmy-owls are more common, use 

similar environments, but are declining (see Chapter 1). These populations are important 

for recovery in Arizona because natural or facilitated dispersal from Mexico can augment 

populations, especially when coupled with efforts to restore high-quality habitat.   

 Pygmy-owls are territorial, raise one brood per year, and exhibit high variation in 

clutch size (2-6) and annual reproductive output (0-6) in the region. Although generalists 

throughout their range, pygmy-owls’ main prey in this region are diurnal lizards, and 

secondarily large invertebrates. In these arid environments, habitat is largely confined to 

riparian woodlands along drainages that are dominated by microphyllous trees such as 

mesquite (Prosopis velutina) and nearby uplands of desert-scrub and semi-desert 

grassland with giant saguaro cacti (Carnegiea gigantea) that provide nest cavities. 

Although historically pygmy-owls were often found in mesic riparian areas dominated by 

broadleaf trees, few recently occupied areas include these characteristics (USFWS 2011).  
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 In Arizona, pygmy-owls were the focus of a major controversy between developers 

and conservationists in the late 1990s. At that time a large proportion of the Arizona 

population occupied lands with high economic and conservation values near Tucson. 

Although the controversy has subsided with the loss of regulations linked to endangered 

status and recent extirpation of pygmy-owls near Tucson, the owl remains a focal species 

in conservation plans in Arizona. Currently, unresolved questions with important 

conservation implications include whether pygmy-owls are associated with vegetation 

edges or woodland interiors, how anthropogenic disturbance and other factors affect 

habitat quality, and the relative importance of riparian vs. upland vegetation. 

 Two major vegetation communities occur in the study area. Desert-scrub is composed 

of woodland and scrub of short leguminous trees such as mesquite, shrubs such as 

creosote (Larrea tridentata) and bursage (Ambrosia sp.), and cacti. Semi-desert grassland 

is composed of savannah and open woodlands of mesquite, bunchgrasses, and sub-

shrubs. Riparian areas in both communities are dominated by woodlands of mesquite. 

Climate in the region is arid to semi-arid with precipitation focused during a summer 

monsoon that originates in the Gulf of Mexico and during winter storms of Pacific origin 

that are most intense during the El Niño Southern Oscillation. Summers are typically hot 

with maximum temperatures >40°C and winters are cold with minimum temperatures 

near 0°C. Pygmy-owls establish breeding territories in Jan-Mar, lay eggs in Apr, and 

brood in mid-May and June. 

 METHODS 

Study design and approach 

 Sampling strategy.—The basic units of our analyses are individual territory patches 

that can each be occupied by single territorial individuals or breeding pairs. This 
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approach is advantageous because differences in resources and conditions at territory-

specific scales should be more closely linked to variation in individual performance 

(Breininger and Oddy 2004, McLoughlin et al. 2007) and because variation in individual 

quality of different animals that occupy patches over time averages out (Sergio et al. 

2009, Mosser et al. 2009). In 2001 and 2002, we used a stratified random sampling 

design to select survey transects across the study area, surveyed owls by broadcasting 

territorial calls, which yields nearly perfect detection probability, searched for nests along 

occupied transects and in other areas selected opportunistically, and located the nests of 

most individuals (Flesch and Steidl 2007). During subsequent years through 2010, we 

surveyed areas around nests from prior years (or locations where owls were detected but 

nests were not initially found) and located the nests of most individuals. Effort was 

focused early in the nesting season. 

 We defined territory patches based on observed and recurring patterns of use by owls. 

To identify patches, we plotted nest coordinates across time and identified clusters of use 

in space. Although owls often nested in different cavities each year, mean within-patch 

distances between nests in successive years (mean ± SE = 226 ± 13 m) was 5.5 times 

lower than that between nests in neighboring patches. Thus, because we located nests of 

most owls each year and because distribution of potential nests was clumped, this 

approach allowed easy identification of territory patches. To represent patches, we placed 

50-ha circles around average nest locations for each patch, which maximized inclusion of 

all nests within patches, minimized overlap with neighboring patches, and is similar to 

average home-range area during the breeding season (Flesch, unpubl. data). 

 Fitness components.—Because habitat quality represents contributions to population 

growth of individuals in a specific habitat, it is a function of both reproduction and 
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survival. At the individual scale, however, challenges in gathering sufficient demographic 

data have precluded estimating territory-specific population growth rates (λh) in all but a 

few cases (e.g., Franklin et al. 2000, Dugger et al. 2005). We used territory-specific 

estimates of reproductive output (R) to index habitat quality. This approach is plausible   

because in many vertebrates spatiotemporal variation in adult survival (Sa) is often very 

low compared to R, even across broad gradients in habitat quality, and because R is often 

highly correlated with λh (r = 0.57-0.71) and with Sa and juvenile survival (r = 0.69-0.83; 

Franklin et al. 2000, Gaillard et al. 2000, Eberhardt 2002, Dugger et al. 2005, Ozgul et al. 

2007, Arlt et al. 2008). In a Spotted Owl (Strix occidentalis) population for example, 

territory-specific Sa was nearly constant except at very low λh whereas R declined 

proportionally with λh across the full range of variation in habitat quality (Franklin et al. 

2000). Moreover, in a subset of patches where we monitored survival, R was correlated 

with juvenile survival before dispersal (r = 0.49, n = 32) and was 2.5 ± 0.5 times lower or 

zero in 69% of cases where adult mortality occurred (Flesch, unpubl. data).  

 Reproduction consists of two components: the probability territory holders attempt to 

breed and the number of offspring produced by breeders (Lebreton et al. 1990). Because 

annual breeding probabilities were high, we pooled both components when estimating R. 

We located nests by observing owls, searching for sign, and with a small pole-mounted 

video camera that we also used to monitor nests, estimate nestling age, and time final nest 

visits immediately before fledging. We defined R as the number of nestlings that survived 

to within one week of fledging, which is highly correlated with young that actually fledge 

(r = 0.93, n = 35, Flesch, unpubl. data). We considered R to be zero if patches were 

occupied at the start of the breeding season but no nest was found so long as (1) we 

adequately checked all potential nest sites, (2) time between visits was not sufficient to 
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complete nesting, and (3) adults were undetected during successive surveys. We 

considered nests to have failed if they were empty before young could have reached an 

age of 26 days, which is the earliest we observed successful fledging; young typically 

fledge 28-30 days after hatching. If nests failed early and owls re-nested, we considered 

last nest attempts. 

Hypotheses  

 We developed a-priori hypotheses to explain the effects of factors associated with 

each component on R. To develop hypotheses and translate them into statistical models 

we used information on this and related systems and considered three forms of most 

effects (linear, pseudo-threshold, and quadratic). Linear forms predicted hypothesized 

effects changed at a constant rate, pseudo-threshold forms (ln + 1) predicted effects 

changed at a constant rate then approached an asymptote, and quadratic forms predicted 

some maximal or minimal effect at intermediate values.  

 Temporal Hypotheses.—We developed 5 hypotheses to explain the effects of temporal 

factors on R. Temperature (T) could have direct physiological effects or indirect effects 

on food resources and explain R in two general ways. If severe winters affect body 

condition or food resources, we predicted R would decline with lower average minimum 

winter T. If high T during nesting causes direct mortality of nestlings, limits hunting 

activity by adults, or reduces prey activity or abundance, we predicted R would decline 

with increasing average maximum T during nesting. If precipitation (P) augments plant 

productivity and prey abundance, we predicted R would increase with increasing P. If 

increasing net primary productivity (PP) augments food or other resources, we predicted 

R would increase during periods of high normalized difference vegetation index (NDVI), 

which is highly correlated with PP (Pettorelli et al. 2005a, 2011). If owls time breeding to 
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coincide with favorable conditions, we predicted timing of peak NDVI would explain R 

(Appendix A).  

 In addition to these 5 basic hypotheses, we considered 10 additional models 

representing the combined effects of multiple hypotheses (Appendix A). Because the 

effects of temporal factors may vary seasonally, we considered average maximum T 

during the incubation and brooding seasons, and cool-season, warm-season, and annual P 

and PP (Table 1). Because the effects of some factors may interact, we considered 

interactions between T and P and between T and PP.    

 Spatial Hypotheses.—We developed 6 general hypotheses to explain the effects of 

spatial factors on R that we based on the following themes: safe nesting sites, 

environmental harshness, habitat amount, type, and configuration, energy, topographic 

complexity, and anthropogenic disturbance (Appendix B). Because safe sites are critical 

for nesting (Martin 1993), we predicted R would increase (e.g., linear or pseudo-

threshold forms) with abundance of potential nest sites. Because environmental harshness 

can affect productivity, we predicted R would be greater at higher elevations or in semi-

desert grasslands than in more arid lowland desert-scrub or be greatest at moderate 

elevations (e.g., quadratic form). Because foraging space and cover are critical for 

reproduction, we predicted R would increase with habitat amounts within territory 

patches or be greatest at some moderate habitat amounts. Because we were unsure how 

best to represent habitat, we considered three potential definitions of habitat: woodland, 

woodland core area, and edge. Because habitat configuration can affect foraging 

opportunities, edge effects, and predation risk independent of habitat amount (Fahrig 

2003), we predicted R would decline as woodland habitat became increasingly 

fragmented. Alternatively, because energy is a fundamental resource, we hypothesized 
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spatial variation in PP explained R, and predicted R would increase with mean NDVI. 

Finally, because the benefits of foraging space may not be realized unless safe nest sites 

are present, we predicted effects of factors associated with food and foraging space (e.g., 

habitat amount, PP) depended on nest-site abundance.  

 Topographic complexity and anthropogenic disturbance could also drive R by 

affecting important resources. In the Sonoran Desert, pygmy-owl’s main prey consists of 

various species of diurnal lizards, which partition their use of the environment across a 

range of soil substrates and habitat types (González-Romero et al. 1989). Thus, we 

hypothesized that patches with higher substrate diversity and hence more species of prey 

would affect reproduction, and predicted R would increase with increasing average slope 

or be greatest at moderate slopes. Because anthropogenic disturbance can degrade 

resources, we predicted R would decline as disturbance within patches increased or be 

greatest at moderate disturbance.  

 In developing models to represent hypotheses, we considered each potential definition 

of habitat (e.g., woodland, edge), then the effects of topographic complexity and 

disturbance. Because an effect of habitat configuration is implicit when considering edge 

and core-area effects, we considered fragmentation only when assessing the effect of 

woodland amount. Because we suspected safe nest sites and environmental harshness 

were important regardless of other processes, we considered them in all models.  

 Conspecifics.—We hypothesized conspecifics had negative effect on R driven by 

intraspecific competition, and predicted R would decline with the presence or abundance 

of conspecifics. Although conspecifics can have positive effects (Courchamp et al. 2008) 

they were not considered. 



 

50 
 

Environmental measurements  

 Temporal factors.—We used satellite and weather-station data to quantify factors 

associated with temporal hypotheses (Table 1). To quantify weather, we used data on 

monthly P and monthly average minimum and maximum T from one of five weather 

stations closest to each territory patch (WRCC 2011; Fig. 1). To quantify NDVI, we 

compiled time series data (250-m resolution; available at http://modis.gsfc.nasa.gov) at 

16-day intervals between 9 June 2000 and 25 May 2010 (n = 23 samples/yr) and 

extracted estimates as area-weighted averages for each patch; NDVI ranged from 0.133 

to 0.725 and cloud contamination was low (1.4%). NDVI measures the normalized ratio 

of near-infrared (NIR) and red (RED) reflectance. Because green leaves have high NIR 

reflectance and high RED absorption they produce positive NDVI values (0.9 for dense 

green vegetation) whereas bare ground has values close to 0.1. To quantify temporal 

variation in PP independent of spatial variation, we calculated proportional deviations 

from mean NDVI where NDVI deviation = (mean NDVI for the period – mean of NDVI 

for the period in all years)/mean of NDVI for the period in all years. To estimate 

temporal variation in timing of peak NDVI, we calculated the number of days between 

peak NDVI and the start of the warm and cool seasons each year. Because we were 

unsure how best to represent some predicted effects, we quantified temporal factors 

during different seasonal periods (Table 1). 

 Spatial factors.—We used remote sensing and on-the-ground measurements to 

quantify explanatory factors associated with spatial hypotheses (Table 2). Because 

saguaros were the only substrate used for nesting, we quantified abundance of potential 

nest sites by counting the number of saguaros with at least one potential nest cavity in 

patches on a logarithmic scale. To quantify mean elevation, slope, and coefficients of 



 

51 
 

variation in elevation, we used 30-m digital elevation models. To quantify average NDVI 

within patches, we used all area-weighted averages for each patch across time (Table 2).  

 We used a variety of methods to classify land cover into five classes (woodland, non-

woodland, agriculture or other clearing, housing or development, and roadway corridor) 

and estimate cover of each class (see Appendix C). We extracted spectral vegetation and 

soil abundance data from 30-m-resolution Landsat5 Thematic Mapper (TM) images and 

other data sources to quantify woody vegetation cover (see Appendix C). We classified 

pixels with ≥20% woody vegetation cover as woodland, which given typical tree spacing 

in the study area distinguished open woodland and savannah from more closed-canopy 

woodland. To classify land cover classes that represented disturbance, we used Google 

Earth imagery (GE) and digitized polygons around these features. 

 We used the TM- and GE-derived land cover data and program FRAGSTATS 

(McGarigal et al. 2012) to estimate coverage of each land cover class within patches, 

woodland fragmentation, and amount of woodland core-area and edge within patches. To 

quantify woodland fragmentation independent of woodland amount, we scaled density of 

woodland patches by average woody vegetation cover (Table 2). To quantity amount of 

edge, we estimated edge length between all land cover class and between woodland and 

other land cover classes. To quantify amount of core-area habitat, we subtracted an edge 

width of 30 m from all woodland patches and computed remaining woodland areas. 

Because landscape structure around home ranges can affect performance, we also 

estimated area of land cover classes that represented disturbance within 500 m of patches.  

 Data of negative heterospecific interactions are useful for evaluating the functional 

roles of important resources. Thus, we recorded evidence of these interactions with two 

species of cavity nesters (Western Screech-Owl, Megascops kennicottii; American 
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Kestrel, Falco sparverius) that exhibited heterospecific aggression toward pygmy-owls 

by noting evidence where these species appropriated nests from owls or killed owls.   

 Conspecifics.—To describe the presence and abundance of conspecifics, we estimated 

five explanatory factors at three spatial scales (Appendix D). At large scales, we used 

survey data to calculate the proportion of territory patches occupied each year across the 

study area and within each of 11 watershed regions (Fig. 1). At local scales, we estimated 

the presence, number, and density of nearest-neighbor nests around each focal patch. We 

estimated local density (territories/km2) as  

1,000,000 m2

�(𝐷�2)×�1𝑛��
    (eq. 1) 

where 𝐷� is the mean distance to nests in m, n is the number of nests, and 1,000,000 m2 is 

the number of m2 in a km2. Thus, estimates of local density (sensu Coulson et al. 1997) 

were based on the number of neighbors and exact distances to their nests, which was easy 

to measure in this system because most nests had zero, one, or two nearest neighbors 

given the linear arrangement of habitat along drainages. 

Modeling approach  

 We used linear mixed-effects (LME) models of the following general form to estimate 

parameters  

Yij  =  Xij × β + Zi× bi + εij   (eq. 2) 

where Yij is a vector of observed R in the ith patch and jth year; the fixed effects Xij is a 

design matrix of dimension n × p where n  is the number of observations in each patch 

and p is the number of explanatory variables in Xij, and β is a vector of regression 

parameters and p slope parameters for the overall population; the random effects Zi is a 
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design matrix of dimension n × q where q is the number of explanatory variables in Zi, 

and bi are vectors of random effects that are normally distributed with a mean of zero and 

a variance-covariance matrix D with diagonal elements σ2
process that measure process 

variance; and εij is a vector of residual errors that are normally distributed with a mean of 

zero and a variance-covariance matrix E with diagonal elements σ2
ε that measure random 

noise (Pinheiro and Bates 2000).  

 We considered different forms of the random effects and variance-covariance matrices 

D and E. First, we fit territory patch as a random intercept, which ensured standard errors 

of fixed effects were based on the number of patches not the number of observations. 

Second, we considered crossed (factorial) random effects for patch and year. To model 

potential heterogeneity in σ2
ε, we considered models with one variance, variances for 

each year, and the variance covariates annual P and annual rate of patch occupancy, 

which could explain heterogeneity by affecting variation in patch qualities occupied over 

time. To assess models with different random effects and variance-covariance structures, 

we used an over-fitted model, restricted maximum likelihood (REML), and model the 

selection procedures described below. Temporal autocorrelation was low and spatial 

autocorrelation was undetectable and thus no spatial or temporal correlation structures we 

used to model E. We fit models with the nlme library in R (R Core Development Team 

2012); estimates of fixed effects were based on maximum likelihood (ML) methods.  

 We used a Gaussian-based approach because (1) ANOVA techniques are highly robust 

to departures from normality even when response data are distributed as Poisson or 

negative binomial, (2) are more robust than generalized linear models when data do not 

conform to those distributions, and because (3) R was not distributed as Poisson or 

negative binomial given few broods of 1 or 2 young (White and Bennetts 1996, 
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McDonald and White 2010). Regardless, zero-inflation was low (22%), diagnostic tools 

indicated all models met all assumptions, and all predictions were positive.    

 We used an information-theoretic approach and Akaike’s Information Criteria for 

small sample sizes (AICc) to evaluate support among models (Burnham and Anderson 

2002). To compare models, we computed differences in AICc between each model and 

the best approximating model in each set and used AICc weights (wi) to quantify model 

likelihoods. We considered models within approximately 2 ∆AICc units as competitive 

except in cases where models included uninformative parameters.   

 Our model selection approach involved three steps. First, we selected the best model to 

represent each hypothesis by comparing suites of models that each considered related 

factors (e.g., seasonal vs. annual P), hypothesized interactions, and linear, pseudo-

threshold, and quadratic forms of some factors associated with each hypothesis. Although 

most related factors were correlated, we avoided subjective bias by evaluating factors 

separately and choosing the best model to represent each hypothesis. Second, we used 

AICc to rank models representing each hypothesis. Finally, we refined the best models by 

assessing the effects of including or excluding some factors and interactions. When 

refining models, we considered correlations between factors; correlation coefficients (r) 

between factors in models representing hypotheses were ≤0.41.   

Components of variance analysis 

 In addition to identifying important fixed effects, we estimated the magnitude of 

variances of the random effects across space (patch) and time (year). We used 

components of variance analyses (Searle et al. 1992) to decompose process variance into 

spatial and temporal components and estimate the proportion of variance in R explained 
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by factors in the best approximating models for each component of habitat quality. 

Spatial and temporal process variation in a population parameter can be decomposed as     

σ2
process= σ2

temporal + σ2
spatial.    (eq. 3) 

To estimate σ2
spatial, we used an intercepts-only model with a random intercept for 

territory patch, the best variance-covariance structure for E, and REML. To estimate 

σ2
temporal, we used the same approach with year as a random intercept. Magnitudes of 

spatial vs. temporal process variance were expressed as ratios and proportions (e.g., 

σ2
spatial/σ2

process). 

 To describe the amount of temporal and spatial process variation explained by 

important factors, we used the best approximating models for spatial and temporal factors 

to partition process variance as   

σ2
process = σ2

model  + σ2
residual    (eq. 4) 

where σ2
process is either total spatial or temporal variation in R, σ2

model is the amount of that 

variation explained by the best model for either habitat or weather factors, which thus 

estimates σ2
habitat and σ2

weather, and σ2
residual is unexplained variance. Total process 

variation explained by models for the effects of habitat or weather was estimated as  

σ2
model = σ2

process ˗ σ2
residual.     (eq. 5) 

In the LME approach used here, we estimated σ2
process using an intercepts-only model, 

REML, and the most parsimonious structure of E. To estimate σ2
residual, we fit the best 

model for either spatial or temporal factors using REML, which provides unbiased 

estimates of variance not explained by the fixed effects (Searle et al. 1992). Because 

conspecifics affect R across both space and time, we further decomposed σ2
process to 

estimate the magnitude of those effects. To assess the proportion of additional spatial and 

temporal variation explained by conspecifics we combined our best model for the effect 
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of conspecifics with that for habitat and weather into two models and repeated the 

variance decomposition procedure described above. To estimate the degree to which R 

varied across space and time, we computed coefficients of process variation (CV) as 

�𝜎process
2

𝑅�
     (eq. 6) 

where 𝑅� is average R among years or patches and σ2
process is either spatial or temporal 

process variance based on eq. 3.         

Relative contribution of each environmental component 

 We used several approaches to evaluate the combined effects of multiple components 

of habitat quality and to assess the relative and combined effects of each component. In a 

model selection framework, we combined the best models for the effects of habitat, 

weather, and conspecifics into all possible combinations of additive models, which 

produced seven models (e.g., Space only, Space + Time, etc.). Additionally, we 

considered models with all possible combinations of interactions among components, 

which produced another seven models (e.g., Space × Time, Space × Conspecifics + Time, 

etc.). For hypotheses with interactions, we considered all possible combinations of 

interactions between factors for each component and used AICc to select the best models 

to represent hypotheses. If a model that included the effects of habitat only was selected, 

it suggested only habitat resources drove habitat quality. In contrast, if a model that 

included interactions between habitat and weather was selected, it suggested that high-

quality habitats buffered or amplified the effects of weather more than low-quality 

habitats. If a model that included interactions between habitat and conspecifics was 

selected, it suggested rates of density dependence varied among habitats.  
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 We used components of variance analysis to compare the relative contribution of each 

component in explaining R. Total variation in a vital rate explained by the environment 

can be expressed as  

σ2
total = σ2

temporal  + σ2
spatial  + σ2

conspecifics  = σ2
model  + σ2

residual     (eq. 7) 

where σ2
temporal, σ2

spatial, and σ2
conspecifics are estimates of variation due to temporal, spatial, 

and conspecific factors, σ2 
model  is the amount of that variation explained by the best 

model describing those effects, and σ2
residual is unexplained variation. Estimates of σ2

model 

can be further decomposed as  

σ2
model  = σ2

weather + σ2
 habitat + σ2

conspecifics      (eq. 8) 

where σ2
weather and σ2

habitat were estimated based on the best models for each component 

and procedures described above. Because conspecifics affect habitat quality in both space 

and time, we estimated σ2
conspecifics using eq. 5 and computed σ2

model by summing 

estimates from both temporal and spatial models that included the effect of conspecifics. 

To estimate relative contributions of each environmental component, we expressed the 

proportion of σ2
model attributable to each component as σ2

x/σ2
model, where x is weather, 

habitat, or conspecifics. Because the effects of conspecifics may depend on the spatial 

arrangement of habitat, we preformed analyses for the entire population and for only 

those patches with conspecific neighbors.  

 RESULTS 

 We identified 107 territory patches over 10 years; 56% were in desert-scrub (vs. semi-

desert grassland) and 89% were monitored for ≥7 years. We obtained a total of 468 

estimates of R and an average of 4.4 ± 0.2 (± SE) estimates per patch across time. We 

obtained ≥3 estimates of R in 73% of patches and only single estimates in 14% of patches 
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that were rarely occupied. Among years, we obtained 46.8 ± 4.3 estimates per year and 

≥43 estimates per year except during 2001 (n = 32) and 2003 (n = 18).  

Time 

 Temporal variation.—Annual estimates of R averaged 2.77 ± 0.11 young per occupied 

patch and varied somewhat across time with estimates that ranged from 2.16 ± 0.25 in 

2006 to 3.18 ± 0.25 in 2007 (F9, 458 = 1.59, P = 0.116, ANOVA; Fig. 2). Temporal 

process variance (σ2
temporal) was relatively low (0.0380; 95% CI = 0.0031–0.472). A 

coefficient of temporal process variation in R (0.0703) was also relatively low.   

 Temporal factors.—A model with territory patch fit as a random intercept and a single 

residual variance were the best approximating structures when compared to models with 

both territory patch and year fit as crossed random effects (∆AIC c = 2.20) and models 

with residual variances estimated for each year (∆AICc = 7.41) or variance covariates 

(∆AICc ≥ 9.25). Assessment of all final models indicated these structures were optimal.     

 The best approximating model for the hypothesized effects of temporal factors on R 

was model {lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2} (model 8 in Table 3). This model 

represented the hypotheses that high temperatures (T) during nesting, and both annual 

precipitation (P) and primary productivity (NDVI) before nesting, explained R through 

either direct or indirect pathways.  

 When considered in the best model, timing of peak productivity had no effect on R 

(Table 3). Moreover, likelihood of a simpler model without the effect of T, and thus an 

interaction between T and P, was 3-times lower than that for the best model (Table 3). 

There was no evidence of a linear or non-linear temporal trend in R (Table 4) or for the 

intercepts-only model (∆AICc = 7.76). 
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 The best model included a quadratic effect of annual NDVI deviation (e.g., annual 

proportional difference from average NDVI) and an interaction between annual P and 

brooding-season T. R was low or moderate during periods of low or moderate NDVI and 

increased rapidly as NDVI increased (Fig. 2). Although when considered alone, annual P 

had marked effects on R equaled to a 0.30 ± 0.13 young increase with each doubling of P 

(Table 3), the effect of P was best described by its interaction with brooding-season T. R 

increased markedly with increasing P but only during periods of high to moderate T and 

P had little effect on R during periods of low T. Importantly, R decreased to extremely 

low levels during periods of low P and high T (Fig. 2). R was particularly low during 

2002 and especially 2006 when annual P averaged only 28.7 ± 5.8 and 19.0 ± 3.3 cm, 

respectively, or 19 to 46% lower than the decadal average. In 2006, the hottest year on 

record in the region, brooding-season T averaged 38.9 ± 1.1°C or 4.7% higher than the 

decadal average. Despite a combination of hot dry conditions in 2006, annual P and 

brooding-season T were uncorrelated (r = -0.10, P = 0.49, n = 50). Parameter estimates 

for the interaction between P and T were relatively precise (95% CI = 1.45-15.92).      

 Seasonal periods used to describe the effects of important temporal factors on R were 

strongly supported by the data. Substituting cool-season P for annual P in the best model 

for example, increased AICc by 8.41, with more support for an effect of warm-season P 

(AICc = 1.96). Substituting incubation-season T for brooding-season T increased AICc by 

4.65.  

Space 

 Spatial variation.—R averaged 2.65 ± 0.11 young per occupied patch and varied 

markedly across space (F106, 361= 1.32, P = 0.032, ANOVA). Spatial process variance 

(σ2
spatial) in R was relatively high (0.216; 95% CI = 0.070 – 0.661). Coefficients of spatial 
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process variation in R (0.176) and fecundity (0.0878) were relatively high. Moreover, 

when the effects of important habitat factors were considered (see below), patch-specific 

predictions of R varied over 4 fold (0.91 ± 0.37 to 3.97 ± 0.18).    

 Spatial factors.—The best approximating model for the hypothesized effects of spatial 

factors on R was model {lnCav + Comm + Habf + lnCav*Habf + Fraghab} (model 3 in 

Table 5). This model represented the hypotheses that abundance of potential nest sites, 

environmental harshness, and amount and configuration of woodland habitat explained R 

by affecting food, foraging space, predation risk, and other processes. This model 

included a positive effect of presence of semi-desert grassland, a negative effect of 

woodland fragmentation, and an interaction between amount of woodland habitat and 

abundance of potential nest sites.  

 Two others models received some support (∆AICc = 0.01-1.47; Table 5). One model 

(no. 4) included the same factors as the top-ranked model and an interaction between 

slope and abundance of potential nest sites. The second model (no. 11) hypothesized 

overall net primary productivity explained R and included a positive effect of presence of 

semi-desert grassland and an interaction between mean NDVI and abundance of potential 

nest sites (Table 5).  

 Evidence for an effect of woodland habitat was much stronger than that for edge or 

woodland core-area habitat. Relative to the best model, likelihoods of models that 

included edge habitat or woodland core-area habitat were ≥4.8 times lower (Table 5). 

Although R increased somewhat with increasing edge, there was little evidence for the 

effect when included in the best model (Table 4). Amount of woodland habitat was best 

represented by mean proportional woody vegetation cover (Habf) vs. proportion of 

patches classified as woodland (Habw; ∆AICc = 1.46). Although evidence for an effect of 
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woodland habitat was strongest overall, it was highly correlated with woodland core-area 

(r = 0.85) and somewhat less so with edge (r = 0.44) and mean NDVI (r = 0.57). 

 The effects of factors related to food and foraging space depended largely on 

abundance of potential nest sites, which had an overwhelming effect on R. Excluding 

abundance of potential nest sites from the best model increased AICc by 38.17, whereas 

retaining this factor and excluding the interaction with amount of woodland habitat 

increased AICc by 2.88 (Table 4). Although R increased markedly with nest-site 

abundance (e.g., main effects = 2.2 ± 0.4/young increase across the full range of 

variation; Fig. 3), its effect was best represented by an interaction with amount of 

woodland habitat. R increased markedly with nest-site abundance but only in patches 

with moderate to high amounts of woodland and much less otherwise. Moreover, the 

same general pattern applied to most other factors related to food and foraging space 

(Fig. 4). Once nest-site abundance reached moderate levels, R increased with increasing 

amount of woodland habitat, NDVI, and slope, with much weaker effects of woodland 

core-area habitat (Fig. 4). Where nest-site abundance was low, however, amount of 

woodland habitat had negative effects on R (Fig. 4). Parameter estimates for interactions 

between nest-site abundance and woodland amount and NDVI were precise (95% CI= 

0.0034-0.043 and 0.038-0.78, respectively) but less so for that with slope (-0.024-0.56).      

 Woodland fragmentation but not anthropogenic disturbance had important effects on R 

(Table 4). On average, R decreased with increasing woodland fragmentation (Figs. 3 and 

5), which was only moderately correlated with woodland amount (r = 0.41) 

 Differences between macrohabitats (e.g., vegetation communities) had important 

effects on R (Fig. 3). For example, R averaged 0.38-0.50 ± 0.16-0.18 young higher in 

semi-desert grasslands than in desert-scrub, after considering other factors (Table 5). 
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Although R was higher on average at moderate elevations (Fig. 3), macrohabitat effects 

provided a much better explanation of the data than the continuous, nonlinear effect of 

elevation or both factors combined (Table 4). Differences in R between macrohabitats 

were likely not driven by other important factors because they either did not vary 

between macrohabitats (p ≥ 0.77, t-tests for NDVImean and Fraghab) or were greater in 

desert-scrub (p ≤ 0.051, lnCav and Habf). Although magnitudes of slope parameters for 

other important effects were similar in both macrohabitats, R declined with increasing 

woodland fragmentation at a much greater rate in grassland (β ± SE= -0.35 ± 0.088) than 

in desert-scrub (-0.10 ± 0.085). Instead, macrohabitat effects seemed to be driven by 

environmental harshness as decadal differences in annual P and brooding-season T 

averaged 44.8 ± 6.0% higher and 3.1 ± 1.0% lower in grassland, respectively.   

 We observed evidence of negative heterospecific interactions in 7.5% of patches, 92% 

of which were with Western Screech-Owls. Prevalence of these interactions decreased as 

abundance of potential nest sites increased (Fig. 3). Where nest substrates were rare, 

woodland cover averaged 51.7 ± 26.3% higher in patches where we observed negative 

heterospecific interactions. 

Conspecifics 

 Variation in conspecifics.—Presence and abundance of conspecifics varied across time 

and space. Although most patches (73.8%) were in areas where conspecifics were present 

at least one year, conspecifics occupied adjacent patches during only 55.8% of 

observations (n = 261) and nested within 1.5 km of focal nests during only 43.6%. Both 

the number and density of conspecific neighbors around focal patches varied widely 

among patches (F106, 361≥ 5.14, P< 0.001, ANOVA). Conspecific densities ranged from 0 

to 5.5 territories/km2 (mean = 0.68 ± 0.04) and distances between nearest neighbors 
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ranged from 425 to 2,619 m (mean = 1,251 ± 33, n = 287). Conspecific density varied 

also varied across time (F9, 458= 2.36, P< 0.001, ANOVA) with annual means that varied 

>2.5 fold (range = 0.38-1.01).  

 Conspecific effects.—Effects of conspecifics were best described by factors measured 

at a local patch-specific scale, and more specifically, by local conspecific density 

(Appendix D). R declined by 0.18 ± 0.084 young with each 1-territory/km2 increase in 

local density (95% CI = 0.015-0.34). Although R also declined with increasing number 

and presence of conspecific neighbors, estimates were less precise (95% CI = -0.015-0.49 

and -0.023-0.64, respectively; Fig. 6). After adjusting for local density, R increased by 

0.070 ± 0.042 young with each 10% increase in regional occupancy (Fig. 6) but 

considering both effects together reduced AICc by only 0.69. 

Relative contribution of each component 

 Spatial process variance in R (0.216) was 5.7 times greater than temporal process 

variance (0.0380) and thus 85.0% of total process variance was attributable to space. 

Habitat factors in the best model explained >99.9% of spatial process variance (among-

group variance) but only 3.7% of residual variance (within-group variance), and σ2
habitat 

equaled 0.321. Weather factors in the best model explained >99.9% of temporal process 

variance but only 1.3% of residual variance, and σ2
weather equaled 0.0779. An estimate of 

σ2
conspecifics equaled 0.0597. Thus, σ2

model equaled 0.459 and the relative contribution of 

habitat, weather, and conspecifics in explaining R was 0.70, 0.17, and 0.13, respectively.  

 When the relative effects of conspecifics vs. habitat or weather were evaluated further, 

habitat effects were consistently strong but the relative effects of conspecifics vs. 

temporal factors varied. When modeled with habitat factors, conspecifics explained little 

additional spatial variance (4.0 vs. 3.7%) and σ2
habitat (0.328) increased by only 2.2%. 
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When modeled with temporal factors, conspecifics explained much more temporal 

variance (3.6 vs. 1.3%) and σ2
weather (0.146) increased by 87.4%. When contributions of 

each component were considered in only those patches where conspecifics were present, 

σ2
model increased to 0.555 and relatively more variation was explained by habitat (0.82) 

than by weather (0.09) or conspecifics (0.09).  

 When assessed in a model-selection framework, evidence for effects of habitat was 

much greater than that for weather or conspecifics. When the best models for each 

component were compared, ∆AICc for a model with only habitat factors was 4.2-4.6 

times lower than that for models with only weather or conspecifics (Table 6). Regardless, 

likelihood of a model that included the additive effects of all factors in the best models 

for each component was 125-times higher than that for the habitat-only model (Table 6). 

Although support for an effect of conspecifics was lowest overall, a model that included 

conspecifics was 4.8 times more likely than a model that considered only habitat and 

weather.     

 When the effects of important habitat factors were considered, patch-specific 

predictions of R varied widely across space and increased rapidly at low R but more 

gradually thereafter (Fig. 7). When the additive effects of habitat and weather were 

considered together, this same general pattern remained but weather effects re-ordered 

the relative quality of patches somewhat (Fig. 7). Weather effects amplified R by up to 

56% or depressed it by up to 49% in some years but changes of these magnitudes were 

limited to few patches and the absolute value of weather effects averaged 10.5 ± 0.4% 

overall. In contrast, when the additive effects of habitat and conspecifics were considered 

together, differences in patch-specific predictions of R were much lower (Fig. 7). 

Changes in conspecific density amplified R by up to 13% or depressed it by up to 27% 



 

65 
 

but changes of these magnitudes were limited to few patches and the absolute value of 

conspecific effects averaged only 3.3 ± 0.2% overall.        

Interactions among components 

 Evidence for interactions between components was strong. Models with interactions 

between habitat and weather, weather and conspecifics, and habitat and conspecifics all 

had greater support than corresponding additive models, with similar results when all 

three components were considered together (Table 6). Although support for interactions 

was high, relative support among different models that included them was similar (Table 

6). The best model included interactions between brooding-season T, annual P, and 

amount of woodland habitat (Table 6, Appendix E). When this effect was evaluated 

across a hypothetical weather gradient ranging from favorable cool wet conditions to 

harsh hot dry conditions, patches with more habitat amplified the positive effects of 

favorable weather more than those with less habitat (e.g., slopes varied; Fig. 8). Patches 

with more habitat, however, did not buffer the negative effects of harsh weather more 

than those with less habitat (e.g., intercepts did not vary). A highly competitive second-

ranked model included an interaction between annual P and conspecific density (Table 

6). When this effect was evaluated across variation in annual P, R increased steadily with 

P when conspecifics were absent or present at low densities but less so at moderate 

densities (Fig. 8). When densities were high, however, R declined with increasing annual 

P, suggesting intraspecific competition offset the benefits of favorable weather.  

 Models with interactions between habitat and conspecifics included interactions 

between density and three habitat factors (Table 6). When the effect of woodland 

fragmentation was evaluated across variation in density, conspecifics had no effect on R 

when fragmentation was low but R declined at increasingly higher rates as fragmentation 
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increased (Fig. 8). The effects of conspecifics also varied between vegetation 

communities; although fundamental habitat quality was higher on average in grasslands 

(e.g., greater intercept), R declined with increasing density at a rate 2.4 times greater in 

grasslands than in desert-scrub (Fig. 9). When the effects of all important habitat factors 

were considered together, magnitudes of density-dependence varied with fundamental 

habitat quality; although R declined with density in all habitats, high-quality habitats 

buffered the negative effects of conspecifics more that low-quality habitats (Fig. 9).   

 DISCUSSION 

 We assessed habitat quality for Ferruginous Pygmy-Owls during the breeding season 

at the scale of individual territory patches by estimating magnitudes of spatial and 

temporal variation in reproductive output (R) over 10 years, and by evaluating the 

relative contribution and specific effects of factors associated with three general 

components of the environment that drive habitat quality. Although factors associated 

with each component had important effects, spatial factors (e.g., habitat resources) were 

more influential than temporal factors such as weather or conspecifics. Nonetheless, 

weather and conspecifics had large effects during some years and the effects of important 

factors associated with each component often interacted indicating that the collective 

environment influences habitat quality in complex ways and that considering only one 

component in isolation of others may produce misleading results.  

Habitat 

 Habitat determines the availability of resources such as food and nest sites, abundance 

of conspecific and heterospecific competitors, and vulnerability to predation, parasitism, 

and physiological stress (Southwood 1977, Cody 1985, Block and Brennan 1993). 

Vegetation structure is a fundamental attribute of habitat because it simultaneously 
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affects food availability, predation risk, and susceptibility to physiological stress (Cody 

1981, Newton 1998). In this system, attributes of vegetation structure seemed to reduce 

vulnerability to heterospecific enemies, promote foraging opportunities, and mitigate 

exposure to environmental harshness. With regard to general vegetation structure, the 

overall quantity of woody vegetation had greater effects on R than the amounts of edge or 

woodland interior. These patterns largely conform to general descriptions of habitat use 

by pygmy-owls across their range, which occur in a diversity of vegetation types that 

often include scattered patches of dense vegetation interspersed with openings (Cartron et 

al. 2000, Flesch 2003). In our region, areas used by breeding pygmy-owls include areas 

of desert-scrub, thorn-scrub, and tree-invaded grasslands associated with riparian 

woodlands and at least one saguaro cactus with a suitable nest cavity. 

 Because energy is the ultimate resource, differences in habitat quality should be linked 

to spatial variation in trophic energy (Van Valen 1976, Lomnicki 1980). Although woody 

vegetation cover best described spatial variation in R, differences in net primary 

productivity as indexed by normalized difference vegetation index (NDVI), provided a 

highly competitive explanation of the data. In fact, when the effects of both factors were 

compared, R actually increased more at high levels of NDVI but decreased more at low 

levels of vegetation cover (Fig. 4). These differences are likely because NDVI responds 

to productivity of both woody and non-woody vegetation, which is rarely used by owls 

but provides important resources for their prey. Nonetheless, greater effects of woody 

vegetation were likely due to its more direct effect on foraging space and abundance of 

heterospecific enemies. Because NDVI is closely associated with the concept of trophic 

energy, it has proved useful in explaining patterns of distribution, abundance, growth, and 

phenology in a variety of animal systems (Pettorelli et al. 2005a, 2011). Associations 
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between NDVI and vital rates (e.g., Saino et al. 2004, Schaub et al. 2005, Pettorelli et al. 

2007, Tafani et al. 2013, this study), however, are less common.  

 Nest-site availability and specific nest-cavity features can have large effects on 

abundance and demography of cavity-nesting birds due to a broad range of processes 

(Nilsson 1984, Sonerud 1985, Newton 1994). In this system, important nest-cavity 

features include cavity height, entrance area, and orientation, which by affecting thermal 

conditions or predation risk affect both nest-site selection and its demographic 

consequences (Flesch and Steidl 2010). Because availability of these cavity features 

increases with saguaro abundance and because higher abundance of potential nest sites 

augments predator search times and reduces predator efficiency (Martin and Roper 1988), 

patches with more saguaros provide higher quality habitat. Moreover, in the Sonoran 

Desert, pygmy-owls coexist with numerous other cavity nesters such as Western Screech-

Owl, American Kestrel, Elf Owl (Micrathene whitneyi), Gilded Flicker (Colaptes 

chrysoides), Gila Woodpecker (Melanerpes uropygialis), flycatchers (Myarchis sp.), and 

Purple Martin (Progne subis). Thus, when nest sites are rare, space use by these species 

becomes more concentrated, which likely increases cues to predators and promotes 

negative interactions with heterospecific (Fig. 3). Due to these and other processes (e.g., 

Brown and Brown 1986), territories with few potential nests provide lower-quality 

habitat.  

 In arid environments, tree cover is often limited by soil moisture and woodlands are 

restricted to riparian areas that provide essential foraging space and cover (Knopf et al. 

1988). Although riparian areas used by owls rarely supported broadleaf trees, 

microphyllous species such as mesquite provide important habitat for owls and prey 

(Szaro and Jakle 1985, Szaro and Belfit 1986). In the Sonoran Desert, abundance or 
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diversity of common prey increases with vegetation cover, heterogeneity, and mesquite 

abundance, which are all associated with riparian areas and their ecotones (Rosenzweig 

and Winakur 1969, Price 1978, Germano and Hungerford 1981, Jones and Glinski 1985, 

Lloyd et al. 1998). Moreover, independent of the amount of woody vegetation, R 

declined with increasing woodland fragmentation, especially in grasslands where 

vegetation physiognomy and composition are less diverse and edge effects are likely 

higher. Thus, larger patches of riparian woodland provide higher quality habitat, which 

also promotes local persistence over time (Chapter 1). 

 Factors associated with prey habitat in uplands were also important but much less so 

than riparian vegetation. Although most patches were dominated by fine bottomland 

soils, R increased somewhat in patches with higher average slope and thus a greater range 

of soil substrates. Because lizards partition their use of the environment among different 

substrates types and may depend on rocky substrates to maintain preferred body 

temperatures, territories with rocky uplands likely promote lizard diversity and body size 

(Jones and Glinski 1985, Szaro and Belfit 1986, González-Romero et al. 1989, Sinervo 

and Adolph 1994), which enhances resources for owls that rely heavily on lizard prey.  

 Food availability and predation risk are often considered the main drivers of 

reproduction in birds but their relative importance has been debated for decades (Lack 

1954, Ricklefs 1969, Martin 1987, Newton 1998). Behavioral studies show that 

individuals balance the benefits of foraging with the predation risk incurred while doing 

so (Lima 1998), whereas experimental studies show that augmenting food and reducing 

predation risk may have multiplicative benefits (Krebs et al. 1995, Zanette et al. 2003, but 

see Preston and Rotenberry 2006). We found that the effects of a resource that mediates 

predation risk and vulnerability to heterospecific enemies (nest-site abundance) interacted 



 

70 
 

with factors associated with food and foraging space (e.g., woody vegetation cover). R 

increased markedly with increasing nest-site abundance but only in patches where 

vegetation cover was at moderate to high levels (Fig. 4). Thus, once nest sites became 

sufficiently abundant to mitigate predation and other risks, the benefits of food and 

foraging space were realized. Where nests were rare, however, increasing vegetation 

cover actually had negative effects on R, likely because abundance of heterospecific 

enemies such as Western Screech-Owls increases with woody vegetation cover (Hardy et 

al. 1999), which in fact, was much higher in patches where nest sites were rare and 

evidence of these interactions was observed. Although our results suggest the effect of 

heterospecific interactions is greater than food, these effects can be challenging to 

separate because vegetation complexity often affects both foraging and nesting resources 

(Bowman and Harris 1980, Chalfoun and Martin 2009). Because cavity abundance likely 

has little effect on food in this system, such confounding was likely low. Thus our results 

suggest strong evidence of interactive effects between predation and food availability on 

reproduction.   

 The ability of macrohabitat (e.g., vegetation community) vs. microhabitat (e.g., small-

scale features such as nest sites) factors to explain variation in animal abundance and 

demography is rarely assessed (Morris 1985, McClure et al. 2012). With regard to habitat 

quality, most studies consider variation due only to macrohabitats (e.g., Korpimäki 1988, 

Holmes et al. 1996, Van Horne et al. 1997, Pettorelli et al. 2003, Breininger and Oddy 

2004, Nilsen et al. 2004, McLoughlin et al. 2007, Arlt et al. 2008), whereas those that 

consider both types of factors are less common (e.g., Franklin et al. 2000, Pettorelli et al. 

2001, 2005b, Mosser et al. 2009). Because the spatial extent of macrohabitats are 

typically broad, studies that focus on them often pool observations of individuals within 
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each macrohabitat rather than assessing the effects of microhabitat factors on 

performance at home-range scales (but see Franklin et al. 2000, Pettorelli et al. 2005b, 

McLoughlin et al. 2007). Thus, in evaluating patterns and drivers of spatial variation in 

demography, studies focused on macrohabitats often assume populations in these areas 

are single demographic units with little internal structure and that macrohabitat factors 

drive variation in demography. We found that macrohabitat, microhabitat, and landscape 

(e.g., woodland fragmentation) factors all explained variation in R among home ranges. 

Moreover, spatial autocorrelation was undetectable because abundance of important 

resources often varied markedly in adjacent patches in the same macrohabitats. Thus, had 

we considered only macrohabitat factors, important insights on processes that drove 

habitat quality would have been lost. Although habitat quality was greater on average in 

semi-desert grasslands, differences in important microhabitat and landscape factors did 

not explain these differences, and macrohabitats effects seemed to be driven by less 

extreme climates in grasslands. Assessments of habitat quality should consider 

macrohabitat, microhabitat, and potentially landscape factors because they may all be 

important and because macrohabitat effects could be driven by underlying variation in 

microhabitat resources. Because habitat quality is driven by differences in vital rates 

among individuals in specific habitats and depends on environmental variation at home-

range scales, evaluating habitat quality at this scale can provide more process-oriented 

insights. 

Weather 

 Temporal variation in weather can have indirect effects on vital rates by affecting 

resources and direct physiological effects (Stenseth et al. 2002, Mysterud et al. 2008). In 

arid environments where climates are already harsh, extreme events can have major 
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effects on populations and may be increasing due to climate change (Taylor 1934, 

Easterling et al. 2000, Holmgren et al. 2006). Extreme events and the ecological crunches 

they can create are characterized by major perturbations in vital rates that affect 

population dynamics (Van Horne et al. 1997, Holmgren et al. 2006) and potentially 

microevolution (Grant 1986). In the Sonoran Desert, precipitation largely had positive 

effects on R, high brooding-season temperature largely had negative effects, and a 

combination of hot dry conditions contributed to an apparent ecological crunch 

characterized by very low R (Fig. 2), which also affected population dynamics (Chapter 

1). During extreme times, however, most owls still attempted to breed despite realizing 

lower performance. Thus, pygmy-owls seem largely adapted to extreme events likely as a 

result of evolving to cope with a seasonal and highly stochastic environment.  

 In arid environments, precipitation often drives rapid increases in plant and insect 

biomass (Beatley 1969, Jaksic 2001), which augments food and productivity of small 

vertebrates, and subsequently promotes higher productivity and abundance of predators 

(Jaksic et al. 1992, Lima et al. 2002, Letnic et al. 2005, Previtali et al. 2009). Because in 

the Sonoran Desert owls are generalists that often consume large numbers of lizards, 

which are affected more by summer vs. winter precipitation (Rosen 2000), our findings 

that warm-season precipitation was more important than cool-season precipitation and 

that annual precipitation was most influential overall, are consistent with the natural 

history of this system.  

 Despite the importance of precipitation, its effects were largely limited to periods of 

moderate to high temperatures during the brooding season (Fig. 2). This pattern is likely 

due to effects of precipitation on prey abundance and the effects of temperature on prey 

activity during periods of rapid nestling growth and thus high energy demands. Activity 
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levels of lizards depend on their thermoregulatory requirements that vary with the 

physiology and behavior of individual species (Dunham et al. 1989). Because activity 

levels of common prey species decline at high temperatures (Flesch, unpubl. data), 

temperature likely has important effects on prey availability. When precipitation is 

sufficient to promote high prey abundance, however, the effect of temperature on prey 

availability is likely less important, especially in patches with high prey diversity. When 

temperatures are low and thermal conditions are favorable, however, lizards likely remain 

active for longer periods, which bolsters prey availability and compensates for lower prey 

abundance. Because temperature had no effect when precipitation was high, our results 

suggest weather had largely indirect effects on owls. Interactive effects of temperature 

and precipitation on animals (e.g., Alto and Juliano 2001) are rarely observed likely 

because they are rarely considered. When precipitation affects food supply and 

temperature affects prey activity, however, these relationships could be common and 

have important implications given regional predictions for increasing drought and higher 

temperature due to climate change (Seager et al. 2007, Overpeck and Udall 2010). 

Conspecifics 

 Reproductive output within territory patches declined with the presence and 

abundance of conspecific neighbors. Thus, although pygmy-owls are highly territorial, 

conspecifics affect individual performance in this system, which does not conform 

strictly to an Ideal Dominance Distribution (IDD) where performance is maintained 

despite increasing conspecific density. Despite these effects, broad spatial heterogeneity 

in R among territories remained (Fig. 7) indicating general conformance to an IDD. 

Density-dependent declines in performance at individual scales are indicative of 

interference mechanisms of an Ideal Free Distribution (IFD), yet because R clearly did 
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not equilibrate among territories in response to conspecifics, this system does not 

conform to an IFD. Although interference and scramble competition are fundamental 

mechanisms in models of the IFD (Sutherland and Parker 1992, Parker and Sutherland 

1986), our results add to a small but growing literature indicating they may also operate 

in despotic systems (Wauters and Lens 1995, Armstrong et al. 2005, Carrete et al. 2006a, 

López-Sepulcre et al. 2010, Nevoux et al. 2011). Because ideal distributions were 

developed to represent theoretical extremes, such mixed models may be more common in 

nature and suggest a model of the IDD that includes interference should be developed. 

 Levels of negative density dependence were moderate in magnitude and on average 

resulted in a decline of approximately one young per occupied patch across a full range 

of variation in density. Although magnitudes of density dependence in this system may 

be limited by the linear arrangement of habitat and high levels of territoriality, this 

estimate is difficult to compare with those from the literature because (1) most studies of 

density-dependent reproduction focus on average performance at population scales in a 

given year (Newton 1998), (2) reports of significant results often include interactions 

(Carrete et al. 2006a, 2006b), and because (3) studies that manipulate local densities 

consider high- vs. low-density treatments rather than continuous effects (Alatalo and 

Lundberg 1984, Sillett et al. 2004). Regardless, magnitudes of density dependence we 

observed did not eliminate differences in realized quality among territories as has been 

reported in other despotic systems (López-Sepulcre et al. 2010). 

 Studies of density-dependent reproduction and survival typically focus on population 

regulation or population dynamics rather than habitat quality, and thus are framed at 

population vs. individual scales (Sinclair 1989, Newton 1998). Nonetheless, processes 

that create density dependence are not driven by the abundance of animals per se but 
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rather by their effects on resources and social conditions. We observed negative density 

dependence at local territory-specific scales but not at larger scales. Moreover, when 

different local metrics were considered, estimates of conspecific density based on the 

number of neighbors and exact distances to their nests best described the effect 

(Appendix D). Despite these local effects, during an overlapping period in this system, 

models of population dynamics failed to detect significant levels of density dependence 

(Chapter 1). Thus, the spatial scale at which density dependence is assessed can affect 

whether it is detected, which is why studies framed at scales larger than the spatial use of 

individual animals often fail to detect density dependence (Hails and Crawley 1992, Ray 

and Hastings 1996, Coulson et al. 1997, Williams and Leibhold 2000). In this system, 

areas between some patches were occasionally occupied by intervening pairs, which 

augmented local densities. As distances between neighbors contract, territory sizes and 

resource availability likely also contract and antagonistic interactions and costs of 

territorial defense increase, which are the mechanisms that drive density dependence 

(Huxley 1934, Stamps 1990, Both and Visser 2000, Sillett et al. 2004). When density 

dependence is driven by interference or scramble competition, territory- or individual-

specific metrics such as local density (Coulson et al. 1997, this study) or other distances-

based metrics (Newton et al. 1977, Carette et al. 2006a) are best suited for detecting it. 

 In addition to interference, density dependence may also be driven by the effects of 

local interactions manifested at much larger scales. This is because when habitat quality 

varies spatially and despots relegate subordinates to patches of lower quality through 

contest competition, increased variation in resource holding potential among individuals 

can cause average per capita performance to decline with population size (Kluyver and 

Tinbergen 1953, Andrewartha and Birch 1954, Brown 1969). After the negative effects 
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of conspecifics at local scales were considered, however, R actually increased somewhat 

with regional population size (Fig. 6). Thus, owls actually performed better on average as 

regional abundance increased likely because favorable weather augmented food supply 

and carrying capacity that benefits all individuals. Because different density-dependent 

processes may operate simultaneously at different scales, identifying them can elucidate 

how conspecifics affect individual performance and population dynamics. Nonetheless, 

when assessing density-dependent habitat quality, estimating the effects of conspecifics 

at scales relevant to individuals is essential.   

Relative contribution of each component 

 Few studies compare variation in vital or population growth rates across both space 

and time, especially at small spatial scales (Sæther et al. 1999, Franklin et al. 2000, Reid 

et al. 2006, Ozgul et al. 2007). We found that spatial process variation in R among 

territory patches was nearly 6 times greater than that across time and that coefficients of 

process variation were 2.5 times greater across space than time, suggesting large effects 

of habitat. In comparison, magnitudes of spatial vs. temporal process variation in 

reproductive output among territories occupied by Spotted Owl were nearly equal, a 

coefficient of spatial process variation was similar, but that for temporal process variation 

was much greater than in our system (Franklin et al. 2000). Thus, whereas habitat effects 

were also large, R was much more resilient to extreme events in this system. Coefficients 

of temporal variation in R of Barn Owls (Tyto alba, 0.081; Altwegg et al. 2007) is similar 

to that reported here (0.0703), whereas that for multiparous ungulates (0.091-0.098; 

Gaillard et al. 2000) are also similar despite differences in life history.   

 Spatial variation in habitat can have large and persistent effects on animal performance 

(Blancher and Robertson 1985, Newton 1989, 1991, Franklin et al. 2000, McLoughlin et 
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al. 2007), but few studies have estimated these effects in wild populations while also 

considering stochastic temporal factors and conspecifics. Although habitat resources 

explained much greater proportions of variation in R than stochastic factors or 

conspecifics (0.70 vs. ≤0.17), R varied by up to 56% due to stochastic effects and by up 

to 27% due to conspecifics in some patches during some years (Fig. 7). Thus, while good 

territory patches tended to remain good over time, the effects of stochastic factors and 

conspecifics can reorder the realized quality of different points in space across time. 

Although habitat effects should be strong in systems where individuals maintain 

exclusive use of space and depend on largely static resources linked to gross vegetation 

structure, stochastic processes can have large effects on vital rates and population 

dynamics that should be considered when estimating the fitness potential of habitat 

(Tuljapurkar 1990, Boyce et al. 2006, Ezard et al. 2008). 

Interactions among components 

 Processes that drive ecological patterns can involve complex multi-factorial 

explanations that include interactions (Hilborn and Stearns 1992, Holmes 1995). In 

evaluating how the collective environment affected performance, we found that spatial 

and temporal factors interacted in complex and often novel ways and that some habitat 

and weather effects depended on conspecific density. When evaluated in a model 

selection framework, evidence for interactions among components was much stronger 

than that for additive relationships but relative support for different interactions was 

similar suggesting a broad range of processes drove habitat quality simultaneously. 

 Habitat × weather.—Van Horne et al. (1997) suggested that when weather affects 

food supply, habitat quality is likely driven by interactions between habitat and weather. 

Franklin et al. (2000) found that high-quality habitat buffered the effects of harsh weather 
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on survival but not on reproduction of Spotted Owls. Here, we found that territories with 

greater woody vegetation cover magnified the benefits of favorable weather characterized 

by high precipitation and low temperature. However, high-quality habitat failed to buffer 

the negative effects of harsh weather suggesting adverse conditions affect all individuals 

equally. Because in our system precipitation augments prey abundance, which is likely 

already higher on average in territories with more vegetation cover, owls occupying these 

areas attain multiplicative benefits when conditions improve, which further suggests 

interactions between habitat and weather are widespread. Such relationships indicate the 

importance of considering broad temporal contexts when evaluating habitat quality and 

suggest caution when inferring differences in habitat quality based on short-term studies 

(Van Horne et al. 1997). If some habitats are capable of buffering the negative effects of 

harsh weather, habitat quality could be higher where animals are more resilient to 

weather effects than in areas that occasionally support very high performance. Moreover, 

if some habitats magnify the benefits of favorable weather, then relative differences in 

habitat quality may not be detectable until those conditions are present. Assessing the 

extent to which habitat resources can mediate weather effects has important implications 

for management and conservation responses to climate change. 

 Weather × density.—The relative importance of density-dependent vs. density-

independent processes in population biology is a question of great debate (Anderwartha 

and Birch 1954, Turchin 1995). In recent decades, recognition that the effects of extrinsic 

factors may depend on conspecific densities has become widespread (Fowler 1987, 

Sinclair et al. 1989, Turchin 1995, Coulson et al. 2004). Perhaps the most frequently 

reported examples of these interactions involve increasing negative effects of harsh 

winters as conspecific densities rise (Gaillard et al. 2000, Bonenfant et al. 2009). Here, 
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we found that the positive effects of favorable weather on performance acted in a density-

independent manner at low conspecific densities but much less so at moderate densities 

(Fig. 8). When densities were high, however, performance decreased as weather 

conditions improved suggesting its positive effects on resources were offset by high 

intraspecific competition. Interactions between weather and conspecific density are 

typically found during periods of resource scarcity (Fowler 1987, Bonenfant et al. 2009) 

vs. resource abundance (e.g. Owen-Smith 1990, this study). This tendency is likely 

because key factors that drive vital rates vary geographically and because studies in 

temperate vs. tropical systems are much more common (Sinclair 1989, Gaillard et al. 

2000, Newton 1998). While broad generalizations have yet to fully emerge, density-

dependent mortality in the non-growing season may have greater effects on vital rates in 

temperate vs. tropical systems, where density-dependent reproduction or recruitment in 

the growing season seems more influential (Lack 1954, 1966, Fowler 1987, Sæther et al. 

2004). Although we did not assess mortality in the non-growing season, winter severity 

has no effect on reproduction or temporal variation in abundance in this system and the 

same weather factors identified here also drove population dynamics (Chapter 1). 

 Habitat × density.—Understanding how conspecifics affect individual performance is 

an important aspect of behavioral ecology and population biology (Fretwell 1972, Morris 

2003). Nonetheless, few studies have addressed if and how habitat resources mediate the 

effects of conspecifics on performance (Morris 1987, 1989, Knight and Morris 1996, 

Pettorelli et al. 2003, 2005b, McLoughlin et al. 2006). McLoughlin et al. (2006) found 

that high-quality habitats had positive effects on lifetime reproductive success at low but 

not at high conspecific densities. In another ungulate system, Pettorelli et al. (2005b) 

suggested similar patterns in juvenile survival but did not separate the effects of weather 
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and conspecifics, and Pettorelli et al. (2003) found that juvenile survival was high 

regardless of habitat quality at low densities and that high-quality habitat buffered the 

negative effects of conspecifics at high densities. Here, we found that important habitat 

resources mediated the effects of conspecific density on R, albeit in different ways, and 

that habitat of greater fundamental quality typically buffered the negative effects of 

conspecifics more than low-quality habitat (Figs. 8-9). Our findings are novel because we 

considered continuous variation in habitat based on the estimated effects of macrohabitat, 

microhabitat, and landscape factors and because the effects of conspecifics varied 

depending on the habitat factors considered. With regard to landscape factors, 

conspecifics had no effect on R at low levels of woodland fragmentation but increasingly 

negative effects with increasing fragmentation (Fig. 8). With regard to macrohabitat 

factors, rates of negative density dependence were higher in grasslands despite the fact 

that fundamental quality was higher on average in grasslands (Fig. 9). Nonetheless, when 

the effects of all important habitat factors were considered together, high-quality habitats 

buffered the negative effects of conspecifics more than low-quality habitats. 

Consequently, had we considered only macrohabitat effects, insights regarding the effects 

of conspecifics would have varied. Although conspecifics can degrade realized quality in 

a general sense, high-quality resources can buffer these effects and provide greater 

rewards to occupants. While identifying mechanisms that drove these patterns was 

beyond the scope of our efforts, we suspect that territory sizes likely decline as patch 

quality increases, which makes individuals in high-quality habitats less susceptible to the 

effects of conspecifics.    
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Implications 

 Assessments of habitat quality often focus exclusively on habitat resources that vary 

spatially. However, we show that factors such as conspecific density and weather, which 

vary both spatially and temporally, can mediate habitat effects. Thus, more general 

understandings of how the collective environment affects performance may require 

consideration of multiple environmental components and their interactions. In our 

system, individuals that occupied habitats of high fundamental quality realized higher 

performance not only because resources were better, but also because these areas 

buffered the negative effects of conspecifics and amplified the benefits of favorable 

weather. Thus, nonrandom habitat use driven by cues associated with the perceived 

quality of spatial components such as vegetation structure should largely match 

differences in quality among locations through time. This means that organisms (and land 

managers) should be able to locate relatively good territory locations reliably at any 

single point in time. It follows directly that natural selection should promote the evolution 

of habitat selection based on spatially variable environmental characteristics in this 

system. 

 Conservation and management.—Information on factors that drive habitat quality is 

important for guiding management, especially for pygmy-owls that have declined to 

endangered levels in Arizona. Because habitat quality is measured at an individual scale 

whereas conservation focuses on populations, understanding how conspecifics affect 

individual performance and how resources and individuals are distributed is important for 

applying information on habitat quality to conservation. We found that conspecifics had 

only moderate effects on realized habitat quality that declined as fundamental quality 

increased. Thus, strategies focused on enhancing habitat quality should aid conservation, 
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especially when they simultaneously augment habitat area. Because the negative effects 

of conspecifics were limited at densities <0.5 territories/km2, small-scale habitat-

improvement efforts that match these scales will be most efficient. Although we did not 

assess how resources affected territory size or density at larger scales, high-quality 

patches were often immediately adjacent to low-quality patches and individuals were not 

distributed in an ideal free manner. Thus, strategies focused on resources that directly 

affect performance should be more efficient than those focused on density (Johnson 

2007).  

 Our results suggest a variety of strategies to augment populations and recovery 

prospects. Abundance of potential nest cavities had overwhelmingly positive effects on 

performance, especially in areas where foraging space and other resources were 

abundant. Thus, management that promotes the survival and recruitment of saguaros will 

benefit owls. Although habitat manipulations aimed at single species should be 

approached with caution due to potential unintended consequences, erecting nest boxes or 

translocating saguaros in ways that increase nest-site abundance will enhance habitat 

quality, especially when guided by recommendations on specific nest-cavity features (see 

Flesch and Steidl 2010). Focusing such efforts in areas that support large, unfragmented 

woodlands and other important habitat features will be most efficient. 

 Most historical records of pygmy-owls in the Sonoran Desert were from large riparian 

areas in valley bottoms (Flesch 2003, Johnson et al. 2003) that have been lost or degraded 

in the last century (Webb et al. 2007, Flesch 2008). Restoring these once extensive desert 

riparian areas by fostering the establishment and growth of mesquite and other trees will 

enhance recovery prospects for pygmy-owls while also providing habitat for other 

species. Moreover, because increasing woodland cover amplified the positive effects of 
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favorable weather, and decreasing woodland fragmentation reduced the negative effects 

of conspecifics, restoring large unfragmented woodlands such as those typically 

associated with riparian areas should have multiplicative benefits, especially in more arid 

regions where vegetation cover is more limited in uplands.  

 Intensity of hot dry conditions had negative effects on performance that were not 

buffered by high-quality resources. Thus, enhancing habitat quality may not be a realistic 

strategy for adapting to climate change unless resources can buffer the effects of harsh 

weather on survival (e.g., Franklin et al. 2000). Future research in this and other systems 

should assess the degree to which resources can mediate weather effects on survival and 

identify resources that promote high persistence and population growth despite 

unfavorable weather. More generally, because the collective environment affects habitat 

quality in complex ways, integrative approaches that consider the effects of resources, 

stochastic factors, and conspecifics are needed to guide management.  
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Appendix B 

 Models representing the hypothesized effects of spatial factors on reproductive output 

of Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010 (Ecological Archives 

XXX-XXX-XX). 

Appendix C 

 Description of remote sensing methods used to quantify woody vegetation cover and 

other land-cover classifications within territory patches of Ferruginous Pygmy-Owls in 

northwest Mexico, 2001-2010 (Ecological Archives XXX-XXX-XX). 

Appendix D 

 Factors, spatial scales, and models that described the effects of presence and 
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Appendix E 

 Parameter estimates and standard errors for the effects of spatial, temporal, and 
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Table 1.  Temporal factors considered when modeling the effects of weather, primary productivity, and seasonal 

timing of peak primary productivity on reproductive output of Ferruginous Pygmy-Owls in northwest Mexico, 2001-

2010. Primary productivity was quantified based on normalized difference vegetation index (NDVI) at the scale of 

individual territory patches (50 ha) whereas weather was quantified at the closest of five weather stations to each 

patch. 

Variable Period Code Definition Units 

Temperature 

 

Winter - recent Twinter Mean daily minimum temperature  

Nov. - March 

⁰C 

 Incubation – current Tincub Mean daily maximum temperature April ⁰C 

 Brooding  - current Tbrood Mean daily maximum temperature  

May and June 

⁰C 

Precipitation Warm season - 1 yr  

lag 

Pws Total precipitation June - Sept of  

prior year 

cm 

 Cool season - 0.5 yr 

lag 

Pcs Total precipitation Oct. - May, recent cool 

season 

cm 

 Annual - 0-1 yr lag Pyr Total precipitation recent cool season and prior 

warm season 

cm 

Primary  

Productivity 

Warm season - 1 yr  

lag 

NDVIws Deviation from mean NDVI June – 

Sept of prior year 

Proportion 

 Cool season - 0.5 yr 

lag 

NDVIcs Deviation from mean NDVI Oct. – 

May, recent cool season 

Proportion 

 Annual - 0-1 yr lag NDVIyr Deviation from mean NDVI recent  

cool season and prior warm season 

Proportion 

Timing of Primary 

Productivity 

Warm season - 1 yr  

lag 

SNDVIws Days since June 1 of maximum NDVI June - 

Sept of prior year 

Day no. 

 Cool season - 0.5 yr 

lag 

SNDVIcs Days since Oct 1 of maximum NDVI Oct. - 

May, recent cool season 

Day no. 
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Table 2.  Spatial factors considered when modeling the effects of habitat variation on reproductive output of Ferruginous 

Pygmy-Owls in northwest Mexico, 2001-2010. Factors where quantified at the scale of individual territory patches (50 ha) 

Variable Abbreviation Definition  Units 
  

Cavities Cav No. of saguaros with at least one suitable nesting cavity  no., log scale  

Vegetation 

Community 

Comm Dominant community type in patch (desert-scrub or semi-desert 

grassland).  

 categorical 

Elevation Elev Mean elevation from digital elevation model  m 

Woodland 

Habitat 

Habf Mean fractional woody vegetation cover among all 30 × 30 m 

grid cells across patch 

 % 

 Habw Proportion of patch classified as woodland (e.g. 30 × 30 m grid 

cells with ≥20% fractional woody cover)  

 % 

Core-Area 

Habitat 

Corehab Proportion of patch classified as woody vegetation minus 30 m 

edge width 

 % 

Edge  

Habitat 

Edgetotal Length of edge between all 5 total land-cover classes   m 

 Edgehab Length of edge between woodland and other land-cover classes  m 

Mean 

Productivity 

NDVImean Mean normalized-difference vegetation index measured every 16 

days over 10 years  

 ratio × 1000 

Substrate Elevcv Coefficient of variation in elevation among all 30 × 30 m grid 

cells 

 m 

 Slope Mean slope among all 30 × 30 m grid cells in patch  % 

Disturbance Disturb Proportion of patch classified as agriculture, development, or road 

land-cover classes  

 % 

Woodland 

Fragmentation 

Fraghab No. of patches of woodland per ha divided by Habf  no./ha/% 
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Table 3.  Rankings and estimated slope parameters for 15 hypothesized models that explained the effects of temporal 

factors on reproductive output of Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010. Factor names and 

definitions are in Table 1 and descriptions of hypotheses and model numbers are in Appendix A. 

Model K LL ΔAICc wi Slope ± SE 

8) lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 7 -915.10 0.00 0.318 β1 = -33.6 ± 14.0 

     β2 =  -31.0  ± 13.6 

      β3 = 8.7  ± 3.7 

      β4 = 20.3 ± 9.2 

11) lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + 

SNDVIws
2 

8 -914.43 0.72 0.222 β1 = -33.5  ± 14.0 

     β2 = -31.0  ± 13.6 

      β3 = 8.6 ± 3.7  

      β4 = 20.6 ± 9.2 

      β5 = 0.30 ± 0.30 

12) lnPyr + NDVIyr
2 5 -918.26 2.19 0.106 β1 = 0.44 ± 0.19 

      β2 = 18.6 ± 9.2 

14) lnPyr + NDVIyr
2 + SNDVIws

2 6 -917.53 2.80 0.078 β1 =  0.42 ± 0.19 

      β2 = 19.0 ± 9.2 

      β3 =  0.30 ± 0.30 

6) lnTbrood + lnPyr + lnTbrood*lnPyr 6 -917.54 2.81 0.078 β1 = -31.6 ± 14.0 

      β2 = -29.2 ± 13.6 

      β3 = 8.2 ± 3.7 

9) lnTbrood + lnPyr + lnTbrood*lnPyr + SNDVIws
2 7 -916.95 3.69 0.050 β1 = -31.5 ± 14.0 

     β2 = -29.2 ± 13.6 

      β3 = 8.1 ± 3.7 

      β4 = 0.30 ± 0.30 

3) lnPyr 4 -920.30 4.23 0.038 β1 = 0.44 ± 0.19  

13) lnPyr + SNDVIws
2 5 -919.67 5.01 0.026 β1 = 0.43 ± 0.19  

      β2 = 0.29 ± 0.26 

4) NDVIyr
2 4 -920.99 5.62 0.019 β1 = 19.9 ± 9.3  

15) NDVIyr
2 + SNDVIws

2 5 -920.11 5.90 0.017 β1 = 19.4 ± 9.3 

      β2 = 0.34 ± 0.25 

7) lnTbrood + NDVIyr
2 5 -920.21 6.10 0.015 β1 = -1.8 ± 1.4 

      β2 = 19.5 ± 9.3 

10) lnTbrood + NDVIyr2 + SNDVIws
2 6 -919.40 6.54 0.012 β1 = -1.7 ± 1.4  

      β2 = 19.9 ± 9.3 
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      β3 = 0.32 ± 0.25 

 β0 + b0i 3 -923.08 7.76 0.007  

5) SNDVIws
2 4 -922.30 8.24 0.005 β1 = 0.32 ± 0.26 

2) lnTbrood 4 -922.41 8.46 0.005 β1 = -1.7 ± 1.4 

1) Twinter 4 -923.06 9.76 0.002 β1 = -0.0057 ± 0.029  

 Notes:  The intercepts-only model (β0+ b0i) is included for comparison. Slope estimates and SE for SNDVIws 

were multiplied by 1000 
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Table 4.  Rankings of best approximating models of the effects of temporal and spatial factors on reproductive output 

of Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010 compared to other models where some effects were 

included, excluded, or changed. 

Change in effects Model  ΔAICc wi 

Time 

   

 

Best approximating model lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 0.00 0.436 

 

Inclusion of quadratic time effect Year2 + lnPyr + lnTbrood*lnPyr + NDVIyr
2 1.57 0.199 

 

Inclusion of linear time effect Year + lnPyr + lnTbrood*lnPyr + NDVIyr
2 1.58 0.198 

 

Exclusion of P*T interaction lnTbrood + lnPyr + NDVIyr
2 3.33 0.083 

 

Exclusion of NDVI effect lnTbrood + lnPyr + lnTbrood*lnPyr 3.80 0.065 

 

Intercepts only model β0 + b0i 7.76 0.009 

 

Quadratic time effect only Year2 8.92 0.005 

 

Linear time effect only Year 9.13 0.005 

Space 

   

 

Best approximating model lnCav + Comm + Habf + lnCav*Habf + Fraghab 0.00 0.266 

 

Inclusion of Disturb effect lnCav + Comm + Habf + lnCav*Habf + Fraghab + Disturb 0.31 0.227 

 

Exclusion of Hab effect  lnCav + Comm + Fraghab 0.93 0.167 

 

Inclusion of Edge effect lnCav + Comm + Habf + lnCav*Habf + Fraghab + Edgetotal 1.02 0.159 

 

Inclusion of quadratic Elev effect lnCav + Comm + Habf + lnCav*Habf + Fraghab + Elev2 1.90 0.103 

 

Exclusion of Hab*Cav interaction  lnCav + Comm + Habf  + Fraghab 2.88 0.063 

  Exclusion of Comm effect  lnCav + Habf + lnCav*Habf + Fraghab 5.72 0.015 

 

Exclusion of lnCav effect Comm + Habf + Fraghab     38.17   0.000 
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Table 5.  Rankings and estimated slope parameters for hypothesized models that explained the effects of spatial factors 

on reproductive output of Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010. Descriptions of hypotheses and 

model numbers are provided in Appendix B. 

Model K LL ΔAICc wi Slope ± SE 

3) lnCav + Comm + Habf + lnCav*Habf + Fraghab 8 -896.87 0.00 0.237 β1 = 0.15 ± 0.20 

      β2 = 0.46 ± 0.16 

      β3 = -0.068 ± 0.034 

      β4 = 0.023 ± 0.010 

      β5 = -0.18 ± 0.085 

4) lnCav + Comm + Habf + lnCav*Habf + Slope + 
lnCav*Slope + Fraghab 

10 -894.79 0.01 0.235 β1 = -0.17 ± 0.26 

     β2 = 0.38 ± 0.18 

      β3 = -0.069 ± 0.034 

      β4 = 0.023 ± 0.010 

      β5 = -0.66 ± 0.44 

      β6 = 0.27 ± 0.15 

      β7 = -0.19 ± 0.086 

11) lnCav + Comm + NDVImean + lnCav*NDVImean 7 -898.63 1.47 0.114 β1 = -0.55 ± 0.53 

      β2 = 0.50 ± 0.16 

      β3 = -1.00 ± 0.57 

      β4 = 0.41 ± 0.19 

B) lnCav + Comm 5 -901.39 2.86 0.057 β1 = 0.57 ± 0.085 

      β2 = 0.54 ± 0.16 

2) lnCav + Comm + Habf + lnCav*Habf + Slope + 
lnCav*Slope + Disturb 

10 -896.23 2.90 0.056 β1 = -0.060 ± 0.26 

     β2 = 0.51 ± 0.18 

      β3 = -0.050 ± 0.033 

      β4 = 0.018 ± 0.010 

      β5 = -0.77 ± 0.44 

      β6 = 0.27 ± 0.15 

      β7 = 0.11 ± 0.078 

1)  lnCav + Comm + Habf + lnCav*Habf + Slope + 
lnCav*Slope 

9 -897.30 2.95 0.054 β1 = -0.063 ± 0.26 

     β2 = 0.45 ± 0.18 

      β3 = -0.045 ± 0.033 

      β4 = 0.018 ± 0.010 

      β5 = -0.71 ± 0.44 

      β6 = 0.27 ± 0.15 
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8) lnCav + Comm + Edgetot 6 -900.51 3.16 0.049 β1 = 0.60 ± 0.087 

      β2 = 0.54 ± 0.16 

      β3 = 0.063 ± 0.047 

7) lnCav + Comm + Corehab + lnCav*Corehab + Slope + 
lnCav*Slope + Disturb 

10 -896.43 3.30 0.045 β1 = 0.039 ± 0.23 

     β2 = 0.51 ± 0.18 

      β3 = -0.34 ± 0.24 

      β4 = 0.13 ± 0.077 

      β5 = -0.81 ± 0.44 

      β6 = 0.28 ± 0.15 

      β7 = 0.11 ± 0.077 

5)  lnCav + Comm + Corehab + lnCav*Corehab 7 -899.57 3.34 0.045 β1 = 0.38 ± 0.14 

      β2 = 0.49 ± 0.16 

      β3 = -0.31 ± 0.24 

      β4 = 0.13 ± 0.077 

4)  lnCav + Comm + Corehab + lnCav*Corehab + Slope + 
lnCav*Slope 

9 -897.55 3.45 0.042 β1 = 0.030 ± 0.23 

     β2 = 0.44 ± 0.17 

      β3 = -0.31 ± 0.24 

      β4 = 0.13 ± 0.077 

      β5 = -0.75 ± 0.44 

      β6 = 0.29 ± 0.15 

9) lnCav + Comm + Edgetot + Slope + lnCav*Slope 8 -898.83 3.92 0.033 β1 = 0.25 ± 0.21 

      β2 = 0.51 ± 0.17 

      β3 = 0.042 ± 0.049 

      β4 = -0.75 ± 0.44 

      β5 = 0.27 ± 0.15 

10) lnCav + Comm + Edgetot + Slope + lnCav*Slope + 
Disturb 

9 -897.81 3.96 0.033 β1 = 0.23 ± 0.21 

     β2 = 0.58 ± 0.18 

      β3 = 0.020 ± 0.052 

      β4 = -0.83 ± 0.45 

      β5 = 0.28 ± 0.15 

      β6 = 0.11 ± 0.079 

  β0 + b0i 3 -923.08 42.17 0.000   

Notes:  The intercepts-only model (β0+ b0i) is included for comparison.
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Table 6.  Rankings of models that described the individual, additive, and interactive effects of spatial and temporal factors and conspecific density on 

reproductive output of Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010. Factors included in models were identified by assessing a range of a priori 

hypotheses and are the same factors included in the best approximating models for each component. Parameter estimates are in Appendix E. 

Hypothesis Model K LL ΔAICc wi 

Habitat × Weather + 

Density 

lnCav + Comm + Habf + lnCav*Habf + Fraghab + lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + 

Density + lnPyr*Habf + lnTbrood*Habf + lnTbrood*lnPyr*Habf 

16 -882.99 0.00 0.264 

Habitat + Weather × 

Density 

lnCav + Comm + Habf + lnCav*Habf + Fraghab + lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + 

Density + lnPyr*Density  

14 -885.20 0.15 0.245 

Habitat × Weather × 

Density 

lnCav + Comm + Habf + lnCav*Habf + Fraghab + lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr2 

+ Density + Fraghab*Density + Fraghab*lnPyr + Density*lnPyr + Fraghab*Density*lnPyr + 

Habf*Density + Habf*NDVIyr
2 + Density*NDVIyr

2 + Habf*Density*NDVIyr
2 

21 -877.83 0.55 0.201 

Habitat + Weather + 

Density 

lnCav + Comm + Habf + lnCav*Habf + Fraghab + lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + 

Density 

13 -886.80 1.22 0.144 

Habitat × Density + 

Weather 

lnCav + Comm + Habf + lnCav*Habf + Fraghab + lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + 

Density + Habf*Density + Fraghab*Density + Comm*Density  

16 -884.41 2.84 0.064 

Habitat × Weather lnCav + Comm + Habf + lnCav*Habf + Fraghab + lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + 

lnPyr*Habf + lnTbrood*Habf + lnTbrood*lnPyr*Habf 

15 -885.76 3.40 0.048 

Habitat + Weather lnCav + Comm + Habf + lnCav*Habf + Fraghab + lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 12 -889.43 4.36 0.030 
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Habitat × Density lnCav + Comm + Habf + lnCav*Habf  + Fraghab + Density + Habf*Density + Fraghab*Density 

+ Comm*Density  

12 -892.39 10.29 0.002 

Habitat + Density lnCav + Comm + Habf + lnCav*Habf + Fraghab + Density 9 -895.75 10.72 0.001 

Habitat only lnCav + Comm + Habf + lnCav*Habf + Fraghab 8 -896.87 10.87 0.001 

Weather × Density lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + lnPyr*Density 9 -908.67 36.56 0.001 

Weather + Density lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 + Density  8 -910.41 37.95 0.001 

Weather only lnTbrood + lnPyr + lnTbrood*lnPyr + NDVIyr
2 7 -915.10 45.27 0.001 

Density only Density  4 -920.79 50.49 0.001 
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FIG. 1. Study area in northwest Mexico showing the distribution of territory patches used by 

Ferruginous Pygmy-Owls and the location of weather stations considered. Territory patches were 

located in two major vegetation communities and weather stations were located near Sasabe, 

Sonoyta, Cucurpe, Magdelena, and Altar. Regional patch occupancy was estimated in 11 

regions: San Miguel, upper Magdalena, Magdalena-Coyotillo, Busani, upper Alter, lower Altar, 

upper Sasabe, lower Sasabe, upper Plomo, lower Plomo, and Sonoyta (see text). Territory 

patches are 50 ha (not to scale) and the study area was approximately 20,000 km2 in area. 

 

FIG. 2.  Temporal variation and effects of temporal factors on reproductive output of Ferruginous 

Pygmy-Owls in northwest Mexico, 2001-2010. Temperature and precipitation were measured at 

regional scales and normalized difference vegetation index (NDVI) was measured at patch-

specific scales and expressed as proportional deviations from mean NDVI by subtracting the 

mean of all annual estimates across time from each annual estimate and dividing by the mean so 

as to represent years of relatively high vs. lower productivity. Estimates of reproductive output in 

the two lower figures are based on model 8 in Table 3. 

  

FIG. 3.  Effect of habitat factors on reproductive output of Ferruginous Pygmy-Owls in northwest 

Mexico, 2001-2010. Lower right figure shows the number of negative heterospecific interactions 

observed divided by the total number of territory patches in each group across a gradient of 

increasing abundance of potential nest sites. Filled circles in upper figures are patches in semi-

desert grasslands whereas those in the lower figure are patches where we observed negative 

heterospecific interactions. Estimates of reproductive output are based on model 3 in Table 5. 

Inset in upper left figure shows means (± SE) in each vegetation community. 
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FIG. 4.  Interactive effects of abundance of potential nest sites and other habitat factors on 

reproductive output of Ferruginous Pygmy-Owlsin northwest Mexico, 2001-2010.Estimates of 

reproductive output are based on the top-ranked models that include each of the habitat factors 

represented as summarized in Table 5.  

 

FIG. 5. Effects of habitat frgamentation (Fraghab) and quantity of woodland vegetation cover 

(Habf) on reproductive output (R) of Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010. 

Nine territory patches with high abundance of potential nest sites are illustrated to represent these 

effects. Black pixels (30-m) were classified as woodland because they had ≥20% fractional 

woody vegetation cover, whereas gray pixels had <20% woody vegetation cover. Estimates of 

reproductive output are based on model 3 in Table 5. 

 

FIG. 6.  Effects of conspecifics on reproductive output of Ferruginous Pygmy-Owls in northwest 

Mexico, 2001-2010. Conspecific presence, abundance, and density were measured around each 

focal patch during each year and regional occupancy was measured as the proportion of patches 

occupied in each of 11 watershed regions during each year. Estimates of the effect of local 

conspecific density are based model {Density} in Appendix D, estimates of conspecific presence 

and abundance are least square means adjusted for patch effects, and estimates of the effect of 

regional occupancy are adjusted for the effects of local density from model {Density + Occregion}. 

 

FIG. 7. Estimated reproductive output within individual territory patches occupied by 

Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010. Patches are sorted in ascending 

order basis on the estimated habitat effects and only patches with ≥2 observations (n = 92) are 
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shown. Upper figure shows predictions based on estimated habitat effects only (model 3, Table 

5), and the middle and lower figures show estimates based on habitat and temporal factors, and 

habitat and conspecific density, respectively (see Table 6). In lower figures, diamonds are 

average reproductive output and horozontal lines across bars illustrate the range of estimates 

among years within patches.  

  

FIG. 8. Interactive effects of important factors associated with different environmental 

components of habitat quality on reproductive output of Ferruginous Pygmy-Owls in northwest 

Mexico, 2001-2010. The hypothetical weather gradient in the top figure was standardized based 

on annual precipitation and mean maximum temperature during the brooding season so as to 

represent conditions that ranged from wet and cool to hot and dry. Estimates are based on the 

top-ranked models that included these interactions in Table 6. 

 

FIG. 9. Effects of vegetation community and fundamnetal habitat quality on density-dependent 

declines in reproductive output of Ferruginous Pygmy-Owls in northwest Mexico, 2001-2010. 

Habitat quality was classified as high (>3.0), moderate (>2.4-3.0), or low (0.9-2.4) based on 

patch-specific predictions of reproductive output from model 3 in Table 5. Slope parameters and 

SE are from least-squares regression. Estimates are based on the model (Habitat × Density + 

Weather) in Table 6. 
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Appendix A: Description of temporal hypotheses. 

Table A1.  Models representing the hypothesized effects of weather, primary productivity, and seasonal timing of peak 

primary productivity on reproductive output of Ferruginous Pygmy-Owls in northern Sonora, Mexico, 2001-2010. 

Rationale for hypotheses is described in the text. 

Model Hypothesis  Expected results 

1) Winter Temperature  Low temperatures during the winter stress period 

explains R 

 Positive effect of T  

2)  Nesting Temperature  High temperatures during the nestling stress period 

explains R 

 Negative effect of T 

3)  Precipitation   Precipitation before nesting explains R  Positive or quadratic effect of P 

4) Productivity  Primary productivity before nesting explains R  Positive or quadratic effect of NDVI 

5)  Timing  Timing of peak productivity before nesting explains R  Negative or quadratic effect of SNDVI 

6)  Nesting Temperature 

Precipitation 

 High temperatures during and precipitation before 

nesting explains R 

 Negative effect of T, positive or quadratic effect of P, or 

interaction between T and P  

7)  Nesting Temperature, 

Productivity 

 High temperatures during and primary productivity 

before nesting explains R 

 Negative effect of T, positive or quadratic effect of NDVI, or 

interaction between T and NDVI  
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8)  Nesting Temperature, 

Precipitation, Productivity 

 High temperatures during and both precipitation and 

primary productivity before nesting explains R 

 Negative effect of T, positive or quadratic effect of P and 

NDVI, or interaction between T and P and P and NDVI  

9)  Nesting Temperature, 

Precipitation, Timing   

 High temperatures during and both precipitation and 

timing of productivity before nesting explains R 

 Negative effect of T, positive or quadratic effect of P, 

negative or quadratic effect of SNDVI, or interactions 

10) Nesting Temperature, 

Productivity, Timing   

 High temperatures during and both primary productivity 

and timing of productivity before nesting explains R 

 Negative effect of T, positive or quadratic effect of NDVI, 

negative or quadratic effect of SNDVI, or interactions 

11)  Nesting Temperature, Timing, 

Precipitation, Productivity 

 High temperatures and precipitation, productivity, and 

timing of productivity before nesting explains R 

 Negative effect of T, positive or quadratic effect of P and 

NDVI, negative or quadratic effect of SNDVI, or interactions  

12)  Precipitation, Productivity  Precipitation and primary productivity before nesting 

explains R 

 Positive or quadratic effect of P and NDVI, or interaction 

between P and NDVI  

13)  Precipitation, Timing  Precipitation and timing of peak productivity before 

nesting explains R 

 Positive or quadratic effect of P, negative or quadratic effect 

of SNDVI, or interactions 

14)  Precipitation, Productivity, 

Timing   

 Precipitation, primary productivity, and timing of 

productivity before nesting explains R 

 Positive or quadratic effect of P and NDVI, negative or 

quadratic effect of SNDVI, or interactions  

15)  Productivity, Timing    Primary productivity and timing of productivity before 

nesting explains R 

  Positive or quadratic effect of NDVI, negative or quadratic 

effect of SNDVI, or interactions 

 Notes:  positive and negative effects were assessed with both linear and pseudo-threshold ln(x +1) forms of covariates.  Each hypothesis was represented 

by a suite of models that each considered a different related covariate within each variable group in Table 1, and linear, pseudo-threshold, and quadratic forms of 

covariates.  
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Appendix B: Description of spatial hypotheses. 

Table B1. Models representing the hypothesized effects of spatial habitat factors on reproductive output of Ferruginous Pygmy-Owls in 

northern Sonora, Mexico, 2001-2010. Rationale for hypotheses is described in the text. 

Model Hypothesis Expected results 

B)  Cavities, Elevation, 

Vegetation community 

Nest-site availability and environmental 

harshness explains R 

Positive effect of Cav, positive or quadratic effect of Elev, positive effect of semi-

desert grassland  

1) Woodland,  

Topography 

Amount of woodland habitat and topography 

diversity explains R 

Positive or quadratic effect of Hab and Topography or interaction between Cav and 

Hab and/or Cav and Topography 

2) Woodland, Topography, 

Disturbance 

Amount of woodland habitat, disturbance,  

topography diversity explains R 

Positive or quadratic effect of Hab and Topography or interaction between Cav and 

Hab and Cav and Topography negative effect of Disturbance  

3) Woodland,  

Fragmentation 

Amount and fragmentation of woodland 

habitat, disturbance, topography diversity 

explains R 

Positive or quadratic effect of Hab and Topography or interaction between Cav and 

Hab and Cav and Topography negative effect of Disturbance, negative effect of 

Fragmentation 

4) Woodland, Topography, 

Fragmentation 

Amount and fragmentation of woodland 

habitat, topography diversity explains R 

Positive or quadratic effect of Hab and Topography or interaction between Cav and 

Hab and Cav and Topography, negative effect of Fragmentation 

5)  Core-Area Woodland Amount of core habitat explains R Positive or quadratic effect of Core or interaction between Cav and Core  

6) Core-Area Woodland, 

Topography 

Amount of core habitat and topography 

diversity explains R  

Positive or quadratic effect of Core and Topography or interaction between Cav and 

Core area and Cav and Topography 
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7)  Core-Area Woodland, 

Topography, Disturbance 

Amount of core habitat, disturbance,  

and topography diversity explains R 

Positive or quadratic effect of Core and Topography or interaction between Cav and 

Core and Cav and Topography, negative effect of Disturbance 

8)  Edge Amount of edge explains R Positive or quadratic effect of Edge or interaction between Cav and Edge   

9)  Edge, Topography Amount of edge and topography diversity 

explains R 

Positive or quadratic effect of Edge and Topography or interaction between Cav and 

Edge and Cav and Topography 

10)  Edge, Topography, 

Disturbance 

Amount of edge, disturbance, and  

topography diversity explains R 

Positive or quadratic effect of Edge and Topography or interaction between Cav and 

Edge and Cav and Topography, negative effect of Disturbance 

11)  Primary Productivity Primary productivity explains R Positive or quadratic effect of NDVI or interaction between Cav and NDVI  

 Notes:  positive and negative effects were assessed with both linear and pseudo-threshold ln(x +1) forms of covariates.  Each hypothesis was represented 

by a suite of models that each considered a different related covariate within each variable group in Table 2, and linear, pseudo-threshold, and quadratic forms of 

covariates.  
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Appendix C. Description of multi-sensor remote sensing methods used to classify 

land cover and quantify cover of woody vegetation. 

Remote Sensing Data Selection and Pre-Processing – The best time of year to create a 

Landsat based woody cover classification and estimation was determined by examining 

250 meter 16-day composite Normalized Difference Vegetation Index (NDVI) time 

series data from the Moderate Resolution Imaging Spetroradiometer (MODIS) (Fig. C1). 

A summer time period for which NDVI values were low was considered the best, in order 

to minimize the impact of the grass cover and avoid the chances of herbaceous vegetation 

being confused with tree cover.  A few periods met the low vegetation signature criteria, 

but 2007 was chosen for mainly two reasons.  The base value for NDVI in 2007 occurred 

in June which correlated well with cloudless 30 meter Landsat 5 Thematic Mapper (TM) 

image data.  Another plus was that National Agricultural Imagery Program 1 meter 

 

Fig. C1:  Example of multiyear  MODIS time series data for one of the nest-sites, 
highlighting the baseline NDVI values during June of 2007. 
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data (NAIP) was flown for Arizona and parts of Mexico at the end of June 2007.  The 

high resolution NAIP multispectral data allowed us to assess the accuracy of the woody 

cover product created with the coarser TM image data. Landsat image data were 

downloaded from: http://glovis.usgs.gov/.  The study area was contained within four 

different Landsat images: Path 35 Row 39, Path 36 Row 38, Path 36 Row 39, and Path 37 

Row 38.  The majority of the nesting sites fell within Path 36 Row 38 and Path 36 Row 

39 which were captured by the TM sensor on June 27 of 2007.  The image for Path 35 

Row 39 was captured on May 19, 2007, while the image for Path 37 Row 38 was 

captured on June 18, 2007.   

 The four images acquired were run through the Landsat Ecosystem Disturbance 

Adaptive Processing System (LEDAPS) model (Masek et al. 2006, Masek et al. 2012) to 

correct for the effects of atmosphere on the reflectance data.   The four atmospherically 

corrected images were then stitched together to create one image of the study area.  An 

NDVI image and a Principal Components Analysis (PCA) image were created from the 

multispectral image in order to reduce residual noise in the data and better identify woody 

cover in the region. 

 

Land Cover Classification - A Classification and Regression Tree algorithm was 

applied to create the land cover classification for this semi-arid region, similar to 

Villeareal et al. (2012). Training data, to perform the Landsat land cover classification, 

was acquired from 1 meter multispectral NAIP and high spatial resolution Google Earth 

data.  The NAIP data were collected on June 23 only four days before the majority of the 

Landsat data was captured making it ideal for training and assessment. Three classes  
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Table C1:  Accuracy assessment of Landsat land cover classification using spectral 
reflectance, NDVI, and PCA data.  

Landcover Class    1 2 3 Total User Commission Kappa 

Woody Cover 1 49 0 1 50 98.00% 2.00% 0.97 

Non-Woody Cover 2 0 50 0 50 100.00% 0.00% 1.00 

Agriculture 3 1 0 49 50 98.00% 2.00% 0.97 

 Total 50 50 50 150    

 Producer 98.00% 100.00% 98.00%  148   

 Omission 2.00% 0.00% 2.00%   98.67%  

  Kappa 0.97 1.00 0.97       0.98 

  

 

 

Fig. C2:  Land cover classification performed using Landsat spectral data, NDVI data, and 
a PCA image. 
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were trained upon: woody cover, non-woody cover, and agriculture.  Points were selected 

for each of the classes taking into account NDVI values in order to help discriminate 

between classes.  Fifty points were also collected for each of the classes in order to assess 

the accuracy of the land cover classification.  The classification was run with CART 

using the spectral reflectance, NDVI, and PCA data, achieving an overall accuracy of 

about 99 percent (Table C1; Fig. C2). 

 
Woody cover estimation - Using the NAIP data as reference, a Landsat pixel was 

selected as a representation of pure woody cover, while another pixel was selected as a 

representation of pure soil in order to perform a linear Spectral Mixture Analysis (SMA) 

(Van Leeuwen et al. 1997).  The two pixels were selected based on visual interpretation 

of the NAIP data along with the spectral signatures of the selected Landsat pixels.  The 

output from the SMA results in the fractional abundance of vegetation within each pixel 

(Fig. C3).  

 The 30m vegetation abundance data were calibrated with classified woody cover data 

from 1m NAIP multispectral data.  Using a 30 meter by 30 meter polygon grid a range of 

pixels were selected from the vegetation abundance raster representing the following 

abundance ranges: 0-0.1, 0.1-0.2, .2-.3, ,etc.  Percent woody cover was then extracted 

from the NAIP land cover classification by taking a count of the number of pixels 

classified as woody cover within the 30 meter by 30 meter grid.  This count could range 

from 0 to 900 so it was divided by 9 in order to get a percent cover.  Percent woody cover 

was estimated based on the SMA vegetation abundance data for the pixels and their 
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Fig. A3:  Linear spectral mixture model - vegetation abundance results for the Landsat 
mosaic for June 27, 2007.  White represents high vegetation cover, while black represents 
low vegetation cover. 

 

corresponding NAIP-based percent woody cover estimates. Using a linear regression, the 

relationship between the unmixed pixels and NAIP classification had an R2 of 0.7881 

(Fig. C4).  The equation in Figure A5 was applied to the vegetation abundance image to 

create a map of percent woody cover for the entire study area (Fig. C5). 
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Fig. A4:  Results of linear regression of NAIP percent woody cover measurements and the 
Landsat-based vegetation abundance from the linear spectral mixture model. 

 
Fig. C5:  Percent woody cover image as a result of calibrating the vegetation abundance 
(LANDSAT) with NAIP-based woody cover data. 

y = 154.2x - 8.5894 
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Appendix D:  Factor, spatial scales, and models considered to describe the effects of 

presence and abundance of conspecific neighbors on reproductive output 

Table D1.  Factors considered when modeling the effects of presence and abundance of conspecifics on 

reproductive output of Ferruginous Pygmy-Owls in northern Sonora, Mexico, 2001-2010. For presence and 

number of neighbors we considered a maximum distance of 1.5 km from focal nests because preliminary 

analyses indicated little effect beyond this distance. 

Variable Scale Abbreviation Definition Units 

Total Occupancy Population Occtotal Proportion of territory patches occupied 

across the entire study ineach year  

Proportion 

Regional 

Occupancy 

Region Occregion Proportion of territory patches occupied 

within each watershed region in each year  

Proportion 

Presence of 

neighbor 

Local PresN Presence or absence of nearest neighbor 

nesting pair within 1.5 km of focal site 

0 or >0 

individuals 

Number of 

neighbors 

Local No.pres Number of nearest neighbor nesting pairs 

within 1.5 km of focal site 

0, 1, or 2 

individuals 

Density Local Density Number of nearest neighbor nesting pairs per 

km around focal site (see text) 

no./km2 

 
  



 
 

137 
 

Table D2.  Rankings and estimated slope parameters for 5 hypothesized models that explained the effects of 

the presence and abundance of conspecifics on reproductive output of Ferruginous Pygmy-Owls in northern 

Sonora, Mexico, 2001-2010. 

Factor - Scale Formula K LL ΔAICc wi Slope ± SE 

Density - Local Density 

 

4 -920.79 0.00 0.379 β1 = -0.18 ± 0.084 

Number of Neighbors  

Local 

No.pres 4 -921.29 1.01 0.229 β1 = -0.31 ± 0.17 

Presence of Neighbor - 

Local 

PresN 4 -921.53 1.47 0.181 β1 = -0.24 ± 0.13 

Intercepts only β0 3 -923.08 2.54 0.106  

Occupancy - 

Region 

Occregion 4 -922.56 3.54 0.065 β1 = 0.42 ± 0.41 

Occupancy - Populatio  Occtotal 4 -923.06 4.54 0.039 β1 = 0.12 ± 0.61 
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Appendix E: Parameter estimates from supported models that included interactions 

between spatial, temporal, and conspecific factors. 

 
Table E1.  Estimates of slope parameters in models that described 

the individual, additive, and interactive effects of spatial and 

temporal factors and conspecific density on reproductive output of 

Pygmy-Owls in northern Sonora, Mexico 2001-2010. Model 

rankings are presented in Table 8. Only estimates for models within 

5 ΔAICc points are reported 

Model (ΔAICc) 

  Factor β SE 

Habitat × Weather + Density (0.00) 

 lnCav 0.22 0.20 

Comm(SDG) 0.33 0.18 

Habf -17.8 6.6 

lnCav*Habf 0.019 0.010 

Fraghab -0.18 0.084 

lnTbrood -135.9 39.3 

lnPyr -133.8 40.0 

lnTbrood*lnPyr 37.0 11.0 

NDVIyr
2 21.9 8.9 

Density -0.19 0.080 

lnPyr*Habf 4.90 1.83 

lnTbrood*Habf 4.87 1.80 

lnTbrood*lnPyr*Habf -1.35 0.50 

Habitat + Weather × Density (0.15) 

 lnCav 0.22 0.20 

Comm(SDG) 0.34 0.18 
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Habf -0.045 0.034 

lnCav*Habf 0.016 0.010 

Fraghab -0.19 0.084 

lnTbrood -33.6 13.7 

lnPyr -30.4 13.2 

lnTbrood*lnPyr 8.51 3.64 

NDVIyr
2 23.0 8.82 

Density 0.96 0.65 

Density*lnPyr -0.32 0.18 

Habitat × Weather × Density (0.55) 

 lnCav 0.31 0.21 

Comm(SDG) 0.35 0.18 

Habf -0.011 0.039 

lnCav*Habf 0.012 0.011 

Fraghab -0.86 0.74 

lnTbrood -36.1 13.9 

lnPyr -33.3 13.5 

lnTbrood*lnPyr 9.24 3.71 

NDVIyr
2 38.3 21.5 

Density 1.76 1.53 

Density*Fraghab 0.087 0.842 

Fraghab*lnPyr 0.23 0.21 

Density*lnPyr -0.29 0.41 

Density*Habf -0.038 0.020 

Habf*NDVIyr
2 -1.89 1.25 

Density*NDVIyr
2 -22.8 29.9 

Density*Fraghab*lnPyr -0.093 0.23 

Density*Habf*NDVIyr
2 2.88 1.71 
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Habitat + Weather + Density (1.22) 

 lnCav 0.23 0.20 

Comm(SDG) 0.34 0.18 

Habf -0.043 0.034 

lnCav*Habf 0.017 0.010 

Fraghab -0.18 0.084 

lnTbrood -35.6 13.7 

lnPyr -32.3 13.2 

lnTbrood*lnPyr 8.99 3.64 

NDVIyr
2 23.0 8.8 

Density -0.182 0.080 

Habitat × Density + Weather (2.84) 

 lnCav 0.30 0.21 

Comm(SDG) 0.44 0.21 

Habf -0.021 0.038 

lnCav*Habf 0.013 0.011 

Fraghab -0.078 0.10 

lnTbrood -34.9 13.7 

lnPyr -31.8 13.2 

lnTbrood*lnPyr 8.84 3.64 

NDVIyr
2 21.5 8.89 

Density 0.69 0.43 

Habf*Density -0.025 0.016 

Fraghab*Density -0.21 0.11 

Comm*Density -0.18 0.16 

Habitat × Weather (3.4) 

  lnCav 0.22 0.20 

Comm(SDG) 0.34 0.18 
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Habf -17.5 6.60 

lnCav*Habf 0.020 0.010 

Fraghab -0.19 0.085 

lnTbrood -129.7 39.4 

lnPyr -127.4 40.1 

lnTbrood*lnPyr 35.2 11.0 

NDVIyr2 21.9 8.91 

lnPyr*Habf 4.79 1.83 

lnTbrood*Habf 4.80 1.81 

lnTbrood*lnPyr*Habf -1.32 0.50 

Habitat + Weather (4.36) 

  lnCav 0.24 0.20 

Comm(SDG) 0.36 0.18 

Habf -0.047 0.034 

lnCav*Habf 0.018 0.010 

Fraghab -0.19 0.085 

lnTbrood -31.5 13.6 

lnPyr -28.8 13.2 

lnTbrood*lnPyr 8.01 3.63 

NDVIyr
2 23.0 8.89 
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CHAPTER 3 

INTEGRATING BEHAVIORAL AND LANDSCAPE APPROACHES FOR 

UNDERSTANDING ANIMAL DISTRIBUTION 
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Abstract. Habitat quality, quantity, and connectivity are core drivers of animal 

distribution but their effects operate at different spatial scales and are rarely measured 

directly. I integrated behavioral and landscape approaches for explaining distribution by 

estimating the effects of habitat quantity, habitat configuration, and matrix structure at 

landscape scales and both direct and indirect estimates of habitat quality at local territory-

patch scales on long-term occupancy dynamics of pygmy-owls over 12 years. Direct 

estimates of habitat quality based on the effects of resources, environmental stochasticity, 

and conspecific density on vital rates had greater effects on occupancy than landscape 

factors, but inferences were reversed when habitat quality was measured indirectly based 

on habitat structure. Although all landscape factors had important effects, habitat quantity 

had greater effects than habitat configuration and matrix structure that were consistently 

positive at all levels of habitat quality. Enhancing local habitat quality can be more 

efficient for conservation than improving connectivity, especially in appropriate 

landscape contexts.  

Key words 

Connectivity, distribution, fragmentation, habitat area, habitat quality, habitat selection, 

isolation, matrix structure, occupancy. 

INTRODUCTION 

 Understanding processes that drive animal distribution is a core aspect of ecology 

with major implications for conservation. Approaches for explaining distribution, 

however, often focus on different processes and spatial scales, which yield varying 

insights and implications (Armstrong 2005, Hodgson et al. 2009a). Behavioral 

approaches for explaining distribution invoke the principles of habitat selection to assess 
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how environmental variation affects patch choices by individuals at small spatial scales 

(Wiens et al. 1993, Thomas 1994). In contrast, landscape approaches invoke the 

principles of island biogeography, metapopulation theory, and landscape ecology, and 

assess how the amount and connectivity of habitat affect occupancy and extinction-

colonization dynamics at larger scales (Hanski and Gaggiotti 2004). Integrating these 

approaches is important for understanding distribution and for focusing conservation on 

the most important processes and scales. 

 Under habitat approaches, the quality or fitness potential of habitat is thought to drive 

distribution. This is because habitat selection has important fitness consequences, and 

animals are thought to select territory patches (e.g., habitat patch large enough to support 

a breeding pair) in an ideal manner so that distribution precisely reflects patch quality 

(Fretwell 1972). Perceptual errors in assessing patch quality, however, can decouple 

choices from their fitness consequences and create non-ideal patterns of distribution if 

cues used to assess quality are unavailable, future conditions associated with those cues 

are not realized due to stochastic factors, or evolutionarily novel cues promote selection 

of poor habitats (Wiens 1985, Orians and Wittenberger 1991, Schlaepfer et al. 2002). 

Moreover, as spatial scale increases from groups of nearby territory patches to complex 

landscapes, perceptual constraints on detecting high-quality habitats or fitness tradeoffs 

associated with colonizing them can cause patches to be occupied more or less than 

expected based of their quality (Morris 1987, Pulliam 2000). 

Under landscape or metapopulation approaches, variation in the size and isolation of 

habitat patches (e.g., habitat areas distinct from the surrounding matrix) are thought to 

drive distribution. Classically, this is thought to be because extinction probability 
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declines with increasing patch area, as larger populations are less vulnerable to 

extinction, and because colonization probability declines with increasing patch isolation 

(MacArthur and Wilson 1967, Hanski and Gaggiotti 2004). Moreover, as habitat amount 

increases at landscape scales, potential colonists become more abundant, habitat typically 

becomes less isolated, and immigration rates and population persistence increase (Brown 

and Kodric-Brown 1977, Hanski and Ovaskainen 2000, Fahrig 2003).  

 Despite differences, both habitat and landscape approaches have successfully 

explained distribution patterns, albeit in different ways. Habitat approaches indicate 

general conformance to ideal expectations because when the proportion of years a 

territory patch is occupied is plotted against estimates of its quality, there is virtually 

always a positive relationship (Levin et al. 2000, Zimmerman et al. 2003, Sergio and 

Newton 2003, Burgess et al. 2008). However, there are also distributional “mismatches” 

characterized by patches with lower or higher occupancy than expected based on their 

quality. Although, explanations of mismatches include both local and landscape 

processes (Arlt and Pärt 2007, Burgess et al. 2008) our understandings of their relative 

roles is limited.  

 Landscape approaches in a broader range of systems indicate important effects of 

habitat area and occasionally isolation (Hanski and Gaggiotti 2004, Prugh et al. 2008). 

Nonetheless, because habitat isolation often declines as habitat area increases and 

because isolation is a function of habitat configuration (e.g., fragmentation), matrix 

structure, and movement behavior, assessing the independent effects of area and isolation 

is challenging and isolation is often defined in terms of functional connectivity, which is 

the degree to which landscapes foster movement and immigration (Harrison and Bruna 



 

146 
 

1999, Fahrig 2003, Hodgson et al. 2009a). Moreover, a growing number of studies show 

important effects of habitat attributes that are thought to be linked to habitat quality, thus 

effectively broadening landscape approaches (Thomas et al. 2001, Thornton et al. 2011). 

 Despite growing recognition that neither approach is sufficient alone, integrating 

them is complex (Armstrong 2005, Hodgson et al. 2009b). Because habitat choices are 

made by individuals and may depend on the surrounding landscape context, processes at 

both local and landscape scales must be considered. Delineating territory and larger 

habitat patches from the surrounding matrix and characterizing landscape attributes with 

potential to affect movements, however, is rarely straightforward and often subjective 

(Fahrig 2013). Moreover, because habitat quality represents contributions to population 

growth by individuals in specific habitats, which is driven by the effects of resources, 

conspecifics, and stochastic factors on vital rates, these factors should be considered 

when estimating habitat quality and evaluating its role relative to other factors (Franklin 

et al. 2000, Armstrong 2005). Although habitat approaches often estimate habitat quality 

directly based on vital rates (Sergio and Newton 2003), virtually all landscape approaches 

consider indirect estimates based on habitat attributes or density, which may 

underestimate the relative importance of habitat quality vs. landscape processes 

(Mortelliti et al. 2010).  

 Here, I consider hypotheses based on processes fundamental to both habitat and 

landscape approaches to explain long-term occupancy dynamics of Ferruginous Pygmy-

Owls (Glaucidium brasilianum) at territory-specific scales. Specifically, I assessed the 

degree to which occupancy dynamics matched ideal expectations based on habitat 

selection theory and how stochastic and density-dependent processes affected this 
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relationship. Additionally, I assessed the effects of habitat amount and overall quality, 

habitat configuration, and matrix structure at landscape scales, potential interactions 

between local and landscape factors, and compared the relative effects of direct and 

indirect estimates of habitat quality and landscape factors on occupancy dynamics. To 

address these questions, I defined habitat based on observed patterns of use by owls, 

explicitly estimated habitat quality at local and landscape scales based on the estimated 

effects of important environmental factors on reproductive output measured over 10 

concurrent years, and considered estimates of habitat configuration that were 

uncorrelated with habitat amount. 

 If animals distribute themselves ideally in space, then variation in occupancy should 

precisely reflect habitat quality. Thus, the habitat hypothesis states that spatial variation 

in resources that drive habitat quality explain distribution. When this ideal expectation is 

not met, three general explanations of distributional mismatches exist: 1) animals make 

perceptual errors when assessing habitat quality, 2) researchers estimate quality 

inaccurately, or 3) landscape processes drive distribution. If animals make errors in 

assessing habitat quality, cues that promote patch choice may not be well matched with 

their fitness consequences. Thus, the environmental stochasticity hypothesis states that 

stochastic factors such as weather, which can temporarily degrade performance in 

otherwise good habitats, explain distribution, and the trap hypothesis states the effects of 

human activities, which can create evolutionarily novel cues (Robertson and Hutto 2006), 

explain distribution. If researchers estimate patch quality inaccurately, one possibility is 

the density-dependence hypothesis, which states the effects of conspecifics on vital rates 

must be considered when estimating quality. If landscape processes drive distribution, a 
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range of potential explanations are possible. If colonization probabilities are higher or 

extinction probabilities are lower in landscapes with larger populations, or if individuals 

prefer to settle near conspecifics, the habitat amount hypothesis states the area or 

effective area (sensu Hanski 1994) of habitat within landscapes explains distribution. If 

movement and colonization are affected by landscape structure, the habitat configuration 

hypothesis states that habitat fragmentation (e.g., breaking apart of habitat independent of 

amount, sensu Fahrig 2003) explains distribution, whereas the matrix structure 

hypothesis states matrix attributes that affect movement explains distribution. Finally, if 

habitat configuration is important only below some critical threshold in habitat amount 

(nonlinear configuration hypothesis; Andren 1994), interactions between factors explain 

distribution. More broadly, if patch choices by individuals or local probabilities of 

extinction or colonization depend on the surrounding landscape context, interactions 

between local and landscape factors explain distribution.      

MATERIALS AND METHODS 

Study system 

Ferruginous Pygmy-Owls are residents of the lowland Neotropics north to Arizona. In the 

arid Sonoran Desert region of northwest Mexico, breeding habitat includes various types 

of riparian woodland, adjacent uplands of desert-scrub, thorn-scrub, or semi-desert 

grassland, and associated stands of giant saguaro cacti (Carnegiea gigantea), which 

provide nest cavities. Thus, habitat includes multiple land cover types, is challenging to 

delineate into discrete patches using the habitat-patch concept that dominates landscape 

approaches (Fahrig 2013), and is best defined by observed patterns of space use by owls. 

Conveniently, detectability is nearly perfect so that occupancy can be efficiently 
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estimated with standardized techniques (Flesch and Steidl 2007). Because dispersal 

movements and colonization success are affected by landscape structure (Flesch et al. 

2010) landscape processes should affect distribution. Moreover, because pygmy-owls 

have declined to endangered levels in neighboring Arizona, where unoccupied habitat is 

present but often found in degraded landscapes, information on the relative effects of 

local and landscape factors on distribution has important management implications.  

Design 

I considered a random sample of territory patches that spanned broad gradients of habitat 

quality and a large number of independent landscapes of varying structure and 

anthropogenic disturbance across an approximately 20,000 km2 region of northwest 

Mexico. In 2000 and 2001, I selected random points across the study area, surveyed 

transects around points and in other regions selected opportunistically where owls were 

rare (see Flesch and Steidl 2007), and searched for nests exhaustively in occupied areas 

until I located the nests of most pairs. During subsequent years, I surveyed areas around 

nests (or observation points if nests were not initially found) and searched for nests at 

occupied sites. To delineate territory patches, I plotted nest coordinates across time, 

identified clusters of owl use in space, and placed a 50-ha circle around average 

coordinates for each cluster, which matches the area of a home range during the breeding 

season (Chapter 2). Because distribution of potential nest sites was clumped, owls used 

the same general areas over time, and abundance was highest at the start of the study 

(Chapter 1), this approach allowed easy identification of territory patches across a broad 

range of quality. I defined landscapes based on observed patterns of dispersal by placing 

a 5-km radius circle around territory patches, which is ≈0.3 times the length of maximum 
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dispersal distance and thus an appropriate scale to assess landscape effects (Jackson and 

Fahrig 2012, Fahrig 2013, Flesch, unpubl. data).  

Density-dependent habitat quality in a stochastic environment  

In a separate study, I identified factors that explained habitat quality by modeling the 

effects of habitat resources, stochastic factors (weather and primary productivity), and 

conspecific density on reproductive output at territory-patch scales over 10 concurrent 

years (see Chapter 2). This model-based approach provided explicit estimates of territory 

quality based on the additive and interactive effects of these factors, and inference to 

patches that were rarely occupied and landscape scales. In this system, habitat quality 

increases with increasing nest-site abundance, presence of semi-desert grassland, and 

woodland aggregation within territory patches, and woody vegetation cover has 

increasingly positive effects as nest-site abundance increases, but landscape structure 

immediately around patches has no effects. Additionally, reproductive output increases 

with decreasing conspecific density and brooding-season temperature, and increasing 

precipitation and primary productivity (Appendix S1, Chapter 2).   

 Virtually all studies that assess the effects of habitat quality, quantity, and 

connectivity on distribution use indirect estimates of habitat quality, which may 

underestimate its importance. Thus, I compared inferences on the relative effects of 

habitat quality measured directly based on vital rates and indirectly based on resources 

that affect habitat selection. In this system, owls select areas with higher abundance of 

potential nest sites and greater cover of woody vegetation (Flesch and Steidl 2010), 

which I collapsed into a single continuous index of habitat quality by summing their 

standardized values.  
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Landscape factors 

I estimated indices of habitat amount and overall quality, habitat configuration, and 

matrix structure that were largely uncorrelated in a large number of independent 

landscapes (Appendix S2). I used multispectral data from 30-m-resolution Landsat 

images to estimate woody vegetation cover because it is an essential component of owl 

habitat and classified pixels with ≥20% cover as woodland (see Chapter 2). I used Google 

Earth imagery to classify 3 land cover types that represent anthropogenic land use 

(agriculture or large clearing, housing or urban development, roadway corridor). To 

quantify habitat amount, I estimated the number of potential territory patches in each 

landscape based on maps of woody vegetation cover and field observations of pygmy-

owls and saguaros. Because woodlands are often arranged linearly along drainages and 

only areas with woodlands and saguaros provide habitat, this procedure allowed easy 

estimation of habitat amount. Because population size at landscape scales and thus 

colonization potential may best be characterized by both habitat amount and quality, I 

calculated habitat effective area by multiplying habitat amount by landscape quality and 

dividing by maximal quality (Hanski 1994). To quantify landscape quality, I applied the 

same model-based approach used to estimate habitat quality at territory scales. To 

quantify habitat configuration, I used an index of woodland aggregation that was 

uncorrelated with habitat amount termed the “clumpiness” index, which ranges from -1 

(maximal fragmentation) to 1 (maximal aggregation; McGarigal et al. 2012). To quantify 

matrix structure, I computed area, edge length, and largest patch indices (% landscape of 

largest patch) for each land cover class representing anthropogenic land use. I used 

program Fragstats (McGarigal et al. 2012) to estimate landscape factors. 
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Analyses 

I developed statistical models to represent hypotheses and used an information-theoretic 

approach based on Bayesian information criterion (BIC) to evaluate support among them. 

To represent the habitat hypothesis, I considered the effects of habitat quality based on 

the estimated effects of important habitat resources only. To represent the stochasticity 

and density-dependence hypotheses, I considered the effects of habitat quality based on 

the estimated effects of important habitat resources and stochastic factors or conspecific 

density, which I also considered together to assess their combined effects. Because in this 

system high-quality resources buffer the negative effects of conspecifics and amplify the 

benefits of favorable weather, and positive effects of favorable weather are offset by 

competition at high densities (Chapter 2), I also considered the effects of habitat quality 

based on the interactive effects of habitat, stochastic, and conspecific factors (Appendix 

S1). Finally, to assess the trap hypothesis, I predicted increasing anthropogenic land use 

within territory patches would explain the presence of traps. To assess the habitat amount 

hypotheses, I considered the effects of habitat amount and habitat effective area and used 

the best model and to assess the matrix structure hypothesis, I considered the effects of 

each matrix factor separately, assessed combinations of factors from the best models, and 

used the top-ranked model  

 I used mixed-effects logistic regression for binomial counts to fit models and estimate 

parameters with a response variable equaled the number of years patches were occupied 

vs. the number of years surveyed. Because this approach weights samples by the number 

of trials, I used data from all patches including some not surveyed in later years due to 

accessibility constraints. I assigned territory patches to landscape regions based on their 
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spatial arrangement, which I fit as a random effect. All models were fit with the lme4 

library in R 2.15.3 (R Development Core Team 2013). Spatial autocorrelation was 

undetectable in all models. 

 I considered the effects of local and landscape factors separately and then evaluated 

their combined effects. For local factors, I first identified the best description of habitat 

quality and then considered the trap hypotheses. At landscape scales, I considered each 

hypothesis separately and most additive combinations of hypotheses. To evaluate the 

combined effects of local and landscape factors, I considered the best model of local 

effects with all possible additive and interactive combinations of factors from supported 

landscape models. To assess the relative effects of local and landscape factors and direct 

and indirect estimates of habitat quality, I computed standardized regression coefficients.   

RESULTS 

I monitored 112 territory patches in 29 landscape regions that included an average 3.9 ± 

0.5 (±SE) patches. Patches were monitored over an average of 10.2 ± 0.2 years and 

occupied during 6.1 ± 0.3 years. Anthropogenic land use covered 0-29% of landscapes 

and total area of territory patches (n = 1-26) cover 1-15% of landscapes.  

Local effects 

Occupancy dynamics were best explained by estimates of habitat quality that considered 

the interactive effects of habitat resources, stochastic factors, and conspecific density on 

reproductive output (Table 1). Although occupancy was highly associated with all direct 

estimates of habitat quality in the predicted direction, support for the habitat hypothesis 

was lowest overall (∆BIC = 5.27) and considering the effects of stochastic factors and 

conspecific dependence greatly improved correspondence between observed and ideal 
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distribution patterns (Fig. 1). In contrast, relative support for the effects of habitat quality 

measured indirectly based on important habitat attributes was much lower (∆BIC ≥11.73) 

despite strong positive effects (β ± SE = 0.18 ± 0.06). There was no evidence for the trap 

hypothesis. 

Landscape effects 

All landscape factors had important effects on occupancy (Fig. 1). Evidence for the 

habitat amount hypothesis was strongest overall and its predicted effects were included in 

all models with high support (Table 1). The habitat amount hypothesis was better 

represented by habitat effective area than by unadjusted estimates of habitat amount (e.g., 

number of territory patches in landscapes; ∆BIC = 4.71) as occupancy increased with 

landscape quality at a greater rate in landscapes where habitat was common vs. rare (Fig. 

1). Habitat configuration and matrix structure also had important effects that did not 

depend on habitat amount. Occupancy decreased as both area of agriculture (β ± SE = -

0.068 ± 0.027; 100 ha) and area of the largest road (-0.74 ± 0.38) increased within 

landscapes (Fig. 1). On average, occupancy decreased as woodlands became increasingly 

aggregated within landscape (-2.8 ± 1.3).   

 Integrated effects  

When considered together, habitat quality at local scales, and habitat effective area, 

habitat configuration, and matrix structure at landscape scales all had important additive 

effects on occupancy (Table 1). Moreover, evidence for interactions between local habitat 

quality and both landscape habitat configuration and matrix structure was high (∆BIC = 

0.53) but not for habitat effective area, which had positive effects at all levels of local 

habitat quality (∆BIC = 5.23). As area of agriculture increased within landscapes, 
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occupancy declined at a much greater rate in low-quality patches than in those of 

moderate quality and increased somewhat in high-quality patches (Fig. 2). As woodland 

habitat became increasingly aggregated within landscapes, occupancy in low-quality 

patches increased whereas that in high-quality patches decreased. 

 Local habitat quality had greater relative effects on occupancy than landscape factors 

but its importance depended on the processes and estimation procedure considered. When 

habitat quality was estimated directly based on the interactive effects of habitat resources, 

stochastic factors, and conspecific density on reproductive output, its effect was 1.5 times 

greater than that for habitat effective area and >2 times greater than that for habitat 

configuration or matrix structure based on magnitudes of standardized regression 

coefficients (Table 2). When habitat quality was estimated directly based only on the 

effects of important resources, however, the relative magnitude of its effect declined to 

1.2 and >1.7 times greater, respectively. In contrast, the effect of habitat effective area 

was 1.5 times greater than indirect estimates of habitat quality, with similar effects for 

habitat configuration or matrix structure (Table 2). Among landscape factors, the effect of 

habitat effective area was 1.4-1.7 times greater than that for habitat configuration or 

matrix structure.  

DISCUSSION 

 Understanding how habitat quality, habitat amount, habitat configuration, and matrix 

structure affect animal distribution is of great theoretical and applied importance. 

Nonetheless, because habitat quality is difficult to estimate and because habitat typically 

becomes more fragmented as overall habitat amounts decline, few studies have evaluated 

their independent and relative effects, even fewer consider the simultaneous effects of 
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matrix structure, and to my knowledge, no study has assessed all these effects by 

considering explicit estimates of habitat quality based on vital rates (Fahrig 2003, Prugh 

et al. 2008, Mortelliti et al. 2010). I estimated the effects of habitat amount and overall 

quality, habitat configuration, and matrix structure at landscape scales and both direct and 

indirect estimates of habitat quality at local territory-specific scales on long-term 

occupancy dynamics of pygmy-owls across broad gradients in territory quality and 

landscape structure in a large number of independent landscapes. I found that all 

landscape factors affected occupancy but that habitat amount had greater effects than 

habitat configuration or matrix structure, which corresponds generally to findings from 

studies framed at larger scales (Fahrig 2003, Prugh et al. 2008, Hodgson et al. 2009a). 

Local habitat quality, however, had greater effects than landscape factors but only when 

habitat quality was estimated directly based on vital rates. Moreover, my results suggest 

that the effects of habitat connectivity depended on local habitat quality. Although the 

relative effects of landscape factors may be somewhat higher when estimated at different 

scales, these findings confirm important roles of both local habitat quality and landscape 

processes in driving distribution. Because in this system local territory quality is not 

affected by landscapes attributes (and only weakly correlated with habitat effective area 

at landscape scales) and because estimates of habitat configuration were uncorrelated 

with habitat amount (Appendix S1), inferences were largely unconfounded.  

 Habitat approaches for explaining animal distribution are based on the expectation 

that patch choices are driven by the quality or fitness potential of habitat. Thus, patches 

that support the highest population growth rates are thought to be selected first and used 

more consistently over time so that distribution precisely reflects patch quality. Although 
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distribution patterns often conform generally to ideal expectations, distributional 

mismatches characterized by patches that are occupied more or less than expected on the 

basis of their quality are common in nature (Tregenza 1995, Sergio and Newton 2003) 

and were clearly apparent in this system (Fig. 1). Although natural selection should favor 

the ability to accurately assess habitat quality, settlement choices are often made on the 

basis of cues associated with future conditions (especially in seasonal environments) that 

may not be realized due to environmental stochasticity. In the Sonoran Desert, pygmy-

owls select territories with high woody vegetation cover, in part, because it provides 

important habitat for prey. Nonetheless, temporal variation in precipitation and 

temperature affect prey abundance and activity, which might explain why owls perform 

poorly in some years even in good places (or well in poor places; Chapter 2). Moreover, 

territories with higher vegetation cover amplify the positive effects of favorable weather 

on realized habitat quality (Chapter 2). Thus, considering the additive and especially 

interactive effects of weather on habitat quality better explained distribution patterns. 

Although evolutionarily novel cues such as those created by humans can promote 

settlement in poor habitats and also explain mismatches (Robertson and Hutto 2006), this 

pattern was not apparent.  

 Mismatches between distribution and patch quality can also result from inaccurate 

estimates of habitat quality by researchers. The effects of conspecifics for example, are 

rarely considered when estimating habitat quality despite broad recognition that 

individual performance is density dependent. In my system, reproductive output declined 

with increasing conspecific density around focal patches (Chapter 2) and estimates of 

habitat quality that were adjusted these effects better explained distribution. Moreover, 
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because the negative effects of conspecifics are buffered by high-quality resources and 

also mediated by weather effects, interactions among these factors can better explain 

realized habitat quality (Chapter 2) and distribution. Because habitat quality represents 

individual contributions to population growth from specific habitats, considering both 

reproduction and survival could provide even higher conformance with ideal expectations 

than observed here.  

Landscape approaches for explaining distribution focus on the effects of habitat 

amount and habitat connectivity on occupancy and extinction-colonization dynamics at 

scales typically much larger than individual territory patches. Thus, when processes that 

drive distribution are approached from an integrated perspective, landscape factors 

should affect distribution at local scales and explain distributional mismatches revealed 

by habitat approaches. This is especially relevant in systems where territory patches are 

imbedded in complex landscapes with varying quantities and configurations of habitat 

surrounded by matrices of variable permeability to focal organisms (Ricketts 2001, 

Hanski and Gaggiotti 2004). In these cases, perceptual barriers, dispersal limitation, and 

fitness trade-offs associated with movement and search costs and variation in the number 

of potential colonists in the surrounding landscape can affect distribution independent of 

local patch quality (Morris 1987, Stamps 2001, Wiens 2001). My results showed that 

when all core factors that are the focus of landscape approaches were considered 

simultaneously with local territory quality, all factors had important effects on occupancy 

dynamics, which is plausible given the system. In this system, habitat is fragmented into 

areas of variable size and accessibility by moisture gradients that affect woodland 

distribution, topographic gradients that affects saguaro distribution, and by anthropogenic 
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disturbance. Like other resident woodland birds, pygmy-owls disperse short distances by 

flying near ground level and dispersal movements and colonization success are affected 

by landscape structures such as large agricultural fields and roads, which is likely why 

these same structures also affected occupancy dynamics (Harris and Reed 2002, Moore et 

al. 2008, Flesch et al. 2010). Thus, increasing woodland fragmentation had positive 

effects on occupancy independent of habitat amount likely because more dispersed 

habitat fosters movement and because habitat amounts at landscape scales were too low 

to drive interactions with habitat configuration (Andren 1994, Fahrig 2003). Regardless, 

habitat amount had greater effects on occupancy than habitat configuration or matrix 

structure, which was best represented by habitat effective area that scales habitat amount 

by the overall quality of habitat at landscape scales and is thus more closely associated 

with abundance of potential colonists (Schooley and Branch 2011). Generally, habitat 

effective area should have greater effects than habitat connectivity, because production of 

new individuals occurs only within habitat and because it is closely linked to carrying 

capacity. 

 My findings also add to a small but growing literature indicating the effects of some 

landscape factors depend on local habitat quality (Schooley and Branch 2007, Jaquiéry et 

al. 2008, Hodgson et al. 2009b). Evidence for interactions between habitat quality and 

both matrix structure and habitat configuration were high but not for habitat effective 

area, which had consistently positive effects on occupancy at all levels of habitat quality 

(Fig. 2). Because animals often persist longer in high-quality habitat and may have the 

ability to target it during dispersal, the effects of habitat connectivity could generally 

depend on local habitat quality. In this system, occupancy declined markedly with 



 

160 
 

increasing agricultural development at landscape scales only in low-quality territories 

where declining colonization rates likely fail to keep pace with higher extinction rates. 

Although the effects of habitat fragmentation can be positive or negative (Fahrig 2003) 

and were positive on average, fragmentation had negative effects on occupancy in low-

quality territories and positive effects in high-quality territories, likely due to differential 

effects on colonization and persistence. Potential interactions between local and 

landscape factors highlight the importance of integrating habitat and landscape 

approaches for understanding distribution.  

 Habitat quality at local scales had greater effects on occupancy than landscape factors 

but its relative importance depended on how it was estimated. When habitat quality was 

measured indirectly based on resources known to affect habitat selection, habitat effective 

area at landscape scales had greater effects. In contrast, when habitat quality was 

measured directly based on the estimated effects of important resources, weather, and 

conspecific density on reproductive output, its relative effect nearly doubled and was 

much greater than landscape factors. Because habitat quality depends on individual 

contributions to population growth from specific habitats, which is driven largely by how 

the environment affects vital rates (Franklin et al. 2000), these processes should be 

considered when estimating habitat quality and evaluating its role in driving distribution 

(Armstrong 2005). Nonetheless, because virtually all studies that consider habitat quality 

at either local focal patch or regional source patch scales estimate habitat quality 

indirectly (e.g., Thomas et al. 2001, Jaquiéry et al. 2008, Mortelliti et al. 2010, but see 

Frankin and Hik 2004) due likely to logistical constraints, its overall role in driving 

distribution has likely been underestimated.  
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 Distribution patterns represent sums of individual choices projected onto landscapes 

(Lima and Zollner 1996). Therefore, understanding processes that drive distribution 

requires an appreciation of how behavioral decisions by individuals at local scales are 

mediated by landscape processes. Efforts to integrate behavioral and landscape 

approaches for understanding distribution have been underway for some time but few 

studies focus at scales relevant to individual animals (Wiens et al. 1993, Armstrong 

2005). From a landscape perspective, general support for the effects of habitat area and 

occasionally isolation provide a useful framework for explaining distribution but its 

generality may limit more mechanistic understandings. From a behavioral perspective, 

variation in habitat quality should drive patch choices by individuals because high-quality 

habitats confer greater fitness on occupants thereby affecting distribution at a range of 

scales. This is because by driving the birth and death rates individuals, high-quality 

habitats attract more immigrants, have lower extinction probabilities, and contribute more 

individuals to regional populations, which enhances colonization potential.  

 As threats to biodiversity accelerate, identifying key processes that drive distribution 

is critical for conservation (Lindenmayer and Fisher 2007). Nonetheless, because 

landscape and habitat approaches focus on different factors and spatial scales and because 

distributional mismatches reduce population growth rates, integrated approaches will help 

guide conservation (Armstrong 2005). My findings suggest that efforts to augment local 

habitat quality will be more efficient than efforts focused at landscape scales, especially 

given lower anticipated costs. Nonetheless, landscape factors also had important effects 

on occupancy that sometimes depended on local habitat quality, suggesting local 

management should consider the broader landscape context. Thus, local efforts that 
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improve habitat quality in landscapes with more habitat and greater habitat connectivity 

should bolster occupancy the most whereas strategies focused only on connectivity will 

be least effective. Nonetheless, because anthropogenic disturbance was fairly low in my 

study region, connectivity could be more important in more altered landscapes. This is 

especially true in landscapes that support little habitat and population networks close to 

an extinction threshold (Hodgson et al. 2009a), which may be the case in portions of 

southern Arizona where pygmy-owls are endangered, large areas of riparian bottomland 

habitat has been lost, and owls are relegated to small habitat fragments on adjacent 

outwash plains. Strategies focused on processes with the greatest effects on distribution 

should enhance conservation efforts. 
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Table 1. Effects of local and landscape factors on distribution of Ferruginous Pygmy-Owls in northwest, Mexico 2001-2013. Distribution was 

estimated annually based on territory-specific estimates of occupancy. Local processes considered the effects of anthropogenic disturbances that drive 

the presence of ecological traps, and the effects of habitat quality based on the estimated additive and interactive effects of habitat resources, stochastic 

factors, and conspecific density on reproductive output monitored over 10 years in the same territory patches. An indirect estimate of habitat quality 

based on resources important to habitat selection was also considered. Landscape processes considered the effects of habitat amount and overall 

habitat quality, habitat fragmentation, and matrix structure at a landscape scale around territory patches. All models are based on mixed-effects logistic 

regression for binomial counts where the response was number of years a territory patch was occupied vs. number of years surveyed; landscape was fit 

as a random effect. 

Scale 
K BIC ΔBIC wi Hypothesized Factors 

Local Processes 
    Habitat × Stochasticity × Density 3 277.19 0.00 0.53 

Habitat × Stochasticity × Density + Traps 4 279.66 2.47 0.15 

Habitat + Stochasticity + Density 3 279.67 2.48 0.15 

Habitat + Stochasticity 3 281.33 4.14 0.07 

Habitat + Density 3 281.42 4.23 0.06 

Habitat  3 282.46 5.27 0.04 

Indirect Habitat  3 294.19 17.00 0.00 

Null 2 300.50 23.31 0.00 

Traps 3 302.19 24.99 0.00 

Landscape Processes 
    Habitat Amount + Matrix Structure 5 292.40 0.00 0.48 

Habitat Amount 3 294.03 1.62 0.21 
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Habitat Amount + Habitat Configuration 4 294.41 2.00 0.18 

Habitat Amount + Habitat Configuration + Matrix Structure 6 295.46 3.05 0.11 

Null 2 300.50 8.09 0.01 

Matrix Structure 4 301.35 8.95 0.01 

Habitat Configuration 3 302.48 10.08 0.00 

Nonlinear Habitat Configuration 6 304.81 12.41 0.00 

Habitat Configuration + Matrix Structure 5 304.98 12.58 0.00 

Local and Landscape Processes 
    Hab. Quality + Hab. Amount + Hab. Configuration 5 275.54 0.00 0.25 

Hab. Quality + Hab. Amount + Matrix Structure 6 275.58 0.04 0.24 

Hab. Quality + Hab. Amount + Hab. Quality × Hab. Configuration + Hab. Quality × Matrix Structure 9 276.07 0.53 0.19 

Hab. Quality + Hab. Amount 4 277.05 1.51 0.12 

Hab. Quality + Hab. Amount + Hab. Configuration + Matrix Structure 7 277.65 2.11 0.09 

Hab. Quality + Hab. Quality × Hab. Amount + Hab. Quality × Hab. Configuration 6 277.78 2.24 0.08 

Hab. Quality + Hab. Quality × Hab. Amount + Hab. Quality × Hab. Configuration + Hab. Quality × Matrix Structure 10 280.77 5.23 0.02 

Hab. Quality × Hab. Amount 5 281.75 6.20 0.01 

Hab. Quality × Hab. Amount + Hab. Quality × Matrix Structure 8 283.51 7.97 0.00 



 

 
 

Table 2. Standardized regression coefficients for the effects of local and landscape factors on distribution 

of Ferruginous Pygmy-Owls in northwest, Mexico 2001-2013. Coefficients are from three different 

models that considered the effects of habitat quality estimated based on two different procedures. Indirect 

estimates of habitat quality were based on abundance of resources associated with habitat selection in this 

system. Direct estimates of habitat quality considered the effects of important habitat resources only and 

the effects of habitat resources, stochastic factors, and conspecific density on reproductive output 

monitored over 10 years. Coefficients are based on model {Habitat Quality + Habitat Amount + 

Fragmentation + Matrix} and mixed-effects logistic regression for binomial counts where the response 

was number of years a territory patch was occupied vs. number of years monitored. 

  
Indirect - Habitat 

Only   
Direct - Habitat 

Only   

Direct - Habitat × 
Stochasticity × 

Density 

Factor β SE   β SE   β SE 

Local Habitat Quality 0.191 0.086 
 

0.319 0.075 
 

0.360 0.076 

Habitat Effective Area 0.284 0.100 
 

0.258 0.092 
 

0.248 0.090 

Largest Road Index -0.137 0.088 
 

-0.139 0.085 
 

-0.151 0.084 

Area of Agriculture -0.240 0.111 
 

-0.188 0.103 
 

-0.177 0.100 

Habitat Fragmentation -0.149 0.097   -0.177 0.092   -0.146 0.089 
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Figure Captions 
 
Figure 1 Effects of local and landscape factors on distribution of Ferruginous Pygmy-

Owls in northwest, Mexico 2001-2013. Distribution was estimated annually based on 

territory-specific estimates of occupancy. Top row shows the effects of local habitat 

quality based on the estimated effects of habitat resources only, and based on different 

additive and interactive combinations of habitat resources, stochastic factors, and 

conspecific density on reproductive output monitored over 10 years in the same territory 

patches. Bottom row shows the effects of habitat effective area, matrix structure, and 

habitat configuration at a landscape scales. 

 

Figure 2 Interactive effects of local habitat quality and landscape factors on distribution 

of Ferruginous Pygmy-Owls in northwest, Mexico 2001-2013. Distribution was 

estimated annually based on territory-specific estimates of occupancy. Effects of area of 

agriculture and habitat configuration are based on model {Habitat Quality + Habitat 

Amount + Habitat Quality × Fragmentation + Habitat Quality × Matrix Structure} 

whereas effects of habitat effective area are based on model {Habitat Quality + Habitat 

Quality × Habitat Amount + Habitat Quality × Fragmentation} at three levels of habitat 

quality. Lines show changes in predicted occupancy based on models at average values 

of other covariates; direction and magnitude of effects were largely unaffected at 

different covariates values.
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Fig. 1 
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APPENDICES 

 

Appendix S1: Models and factors used to estimate habitat quality: 
 
In a separate study (see Chapter 2), I identified environmental factors that drove habitat quality (HQ) by assessing a range of hypothesized relationships between 

reproductive output and patch-specific environmental factors over 10 years. Environmental factors included habitat resources, weather-related factors, and local 

conspecific density, which are defined below. All models are based on linear mixed-effects models where the response was the number of young produced during 

each year within each occupied territory patch, and territory patch was fit as a random effect. I predicted patch quality with these models for all 112 territory 

patches, which included 5 patches where demographic monitoring was not completed. Models are listed in order of their power to explain long-term occupancy 

dynamics.  

 

Table S1.1: Models used to estimate habitat quality. 

Hypothesis Model 

  
Habitat × Weather × 

Density 

HQ = 131.6 + 0.31(lnCav) + 0.35(Comm(SDG)) – 0.011(Habf) + 0.012(lnCav*Habf) – 0.86(Fraghab) – 36.1(lnTbrood) – 33.3(lnPyr) + 

9.24(lnTbrood*lnPyr) + 38.3(NDVIyr2) + 1.76(Density) + 0.087(Fraghab*Density) + 0.23(Fraghab*lnPyr) – 0.29(Density*lnPyr) – 0.093 

(Fraghab*Density*lnPyr) – 0.038(Habf*Density) – 1.89(Habf*NDVIyr
2) – 22.8(Density*NDVIyr

2) + 2.88(Habf*Density*NDVIyr
2) 

Habitat + Weather + 

Density 

HQ = 130.4 + 0.23(lnCav) + 0.34(Comm(SDG)) – 0.043(Habf) + 0.017(lnCav*Habf) – 0.18(Fraghab) – 35.6(lnTbrood) – 32.3(lnPyr) + 

8.99(lnTbrood*lnPyr) + 23.0(NDVIyr
2) – 0.18(Density) 

Habitat + Weather HQ = 115.5 + 0.24(lnCav) + 0.36(Comm(SDG)) – 0.047(Habf) + 0.018(lnCav*Habf) – 0.19(Fraghab) – 31.5(lnTbrood) – 28.8(lnPyr) + 

8.01(lnTbrood*lnPyr) + 23.0(NDVIyr
2) 
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Habitat + Density HQ = 2.53 + 0.13(lnCav) + 0.47(Comm(SDG)) – 0.067(Habf) + 0.023(lnCav*Habf) – 0.17(Fraghab) – 0.12(Density) 

Habitat only HQ = 2.43 + 0.15(lnCav) + 0.46(Comm(SDG)) – 0.068(Habf) + 0.023(lnCav*Habf) – 0.18(Fraghab) 
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Table S1.2: Definitions of environmental factors used to describe habitat quality. Habitat resources, primary 

productivity, and conspecific density were measured at the scale of individual territory patches and weather factors 

were measured at five weather stations, most of which were within 1-30 km from patches. 

Category 

Abbreviation Definition Units Variable 
 
Habitat resources 

   

Cavities Cav Number of saguaros with at least one suitable nesting 
cavity 

no. 

Vegetation 
Community 

Comm Dominant community type in patches; either desert-
scrub or semi-desert grassland (SDG) 

category 

Habitat 
Amount 

Habf Mean fractional woody vegetation cover among all 30 × 
30 m grid cells across patch 

% 

Habitat 
Fragmentation 

Fraghab Number of patches of woody vegetation per ha divided 
by Habf 

no./ha/% 

Stochastic factors    

Temperature  Tbrood Mean daily maximum temperature during the brooding 
season (May and June), no lag time  

⁰C 

Precipitation Pyr Total precipitation from June of the current year to May 
of past year 

cm 

Primary 
Productivity  

NDVIyr Deviation from mean normalized difference vegetation 
index (NDVI) from June of the current year to May of 
past year 

Proportion 

Conspecifics    

Local Density Density Number of nearest neighbor nesting pairs per km 
immediately around each focal territory patch 

no./km2 
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Appendix S2: Correlation between local and landscape factors. 
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Table S2.1: Pair-wise correlation between important local and landscape factors.  

 

Local Habitat 
Quality 

 

Habitat 
Effective Area 

 

Matrix-Road 
Size 

 

Matrix-
Agriculture 

 

Habitat 
Aggregation 

  r p   r p   r p   r p   r p 

Local Habitat Quality 
   

0.36 <0.01 
 

0.00 0.97 
 

-0.10 0.30 
 

0.02 0.81 

Habitat Effective Area 0.36 <0.01 
    

-0.03 0.74 
 

0.18 0.06 
 

-0.05 0.60 

Matrix-Road Size 0.00 0.97 
 

-0.03 0.74 
    

0.23 0.01 
 

0.27 <0.01 

Matrix-Agriculture -0.10 0.30 
 

0.18 0.06 
 

0.23 0.01 
    

0.35 <0.01 

Habitat Aggregation 0.02 0.81   -0.05 0.60   0.27 <0.01   0.35 <0.01       
 


